Solve:
I)ax+by=a-b
bx-ay=a+b
Ii) ax+by=bx+ay=1+c
Note: Simultaneous Equation.
no spamming
Answers
Answered by
2
Answer:
Given equations are,
ax+by=a−b ...(i)
bx−ay=a+b ...(ii)
Multiplying eq (i) by a and eq (ii) by b, we get
a(ax+by)=a(a−b)
⇒a
2
x+aby=a
2
−ab ...(iii)
b(bx−ay)=b(a+b)
⇒b
2
x−aby=ab+b
2
...(iv)
Adding eq (iii) and eq(iv)
a
2
x+aby=a
2
−ab
b
2
x−aby=ab+b
2
(a
2
+b
2
)x=(a
2
+b
2
)
⇒x=
(a
2
+b
2
)
(a
2
+b
2
)
⇒x=1
Substituting the value of x in eq (i), we get
a×1+by=a−b
⇒a+by=a−b
⇒by=−b
⇒y=−
b
b
⇒y=−1
Hence x=1 and y=−1.
Similar questions