Math, asked by veda1003, 1 year ago

solve..... I didn't get a proper answer

Attachments:

Answers

Answered by rohitkumargupta
1

x/a + y/b = 2


{\Rightarrow }ay + xb = 2ab----------( 1 )



ax - by = a² - b²---------( 2 )



from-----( 1 ) &-------( 2 )


multiply ( 1 ) by "a" ( 2 ) by "b"



abx + a²y = 2a²b


abx - b²y = ba² - b³


-------------------------------------------------


y(a² + b²) = 2a²b - ba² + b³



{\Rightarrow }y(a² + b²) = a²b + b³



{\Rightarrow }y(a² + b²) = b(a² + b²)



{\Rightarrow }y = b [ put in -----( 1 )]



we get,



{\Rightarrow }ay + xb = 2ab



{\Rightarrow }a(b) + xb = 2ab



{\Rightarrow }xb = 2ab - ab



{\Rightarrow }x = ab/b



{\Rightarrow }x = a




I HOPE ITS HELP YOU DEAR,


THANKS

Answered by hukam0685
0

Hello

Solution:

 \frac{x}{a} + \frac{y}{b}  = 2\\ \\ \frac{bx+ay}{ab} =2\\ \\ bx+ay = 2ab  -----eq1\\ <br />ax-by = a^{2} -b^{2}  \\ \\ --------eq2

Elimination method:

multiply eq 1 by a and eq2 by b and subtract both eqs

 abx+a^{2}y =2a^{2} b\\ \\ abx-b^{2}y = a^{2}b - b^{3}  \\  \\  <br />abx+a^{2}y -abx+b^{2}y =2a^{2} b - a^{2}b + b^{3}\\ \\ (a^{2}+b^{2}) y = a^{2}b + b^{3} <br />\\   \\  (a^{2}+b^{2}) y = (a^{2} + b^{2}) b \\ \\ y = \frac{(a^{2} + b^{2}) b}{(a^{2} + b^{2}) } \\ \\  y = b  -------eq3

Now put the vlaue of y = b from eq 3 into eq1 or in eq2

 bx+ay = 2ab<br />\\ \\ bx + ab = 2ab\\ \\ bx = 2ab-ab\\ \\ bx = ab\\ \\ x =\frac{ab}{b} \\ \\ <br /> x = a  -----eq4


By this way we get y =b and x = a are solution of pair of linear equation in two variable.

Hope it helps you.

Similar questions