Math, asked by shaurya9628, 4 days ago

solve
I < 2
OL
SC+2
Please solve the above question...it is a question of inequality

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:\dfrac{1}{x - 2}  - \dfrac{1}{x}  \leqslant \dfrac{2}{x + 2}

For inequality to be exist,

\rm :\longmapsto\:x \:  \ne \: 0, \:  - 2, \: 2

\rm :\longmapsto\:\dfrac{x - (x - 2)}{x(x - 2)}    \leqslant \dfrac{2}{x + 2}

\rm :\longmapsto\:\dfrac{x - x  +  2}{x(x - 2)}    \leqslant \dfrac{2}{x + 2}

\rm :\longmapsto\:\dfrac{2}{x(x - 2)}    \leqslant \dfrac{2}{x + 2}

\rm :\longmapsto\:\dfrac{1}{x(x - 2)}    \leqslant \dfrac{1}{x + 2}

\rm :\longmapsto\:\dfrac{1}{x(x - 2)}     -  \dfrac{1}{x + 2}  \leqslant 0

\rm :\longmapsto\:\dfrac{(x + 2) - x(x - 2)}{x(x - 2)(x + 2)}\leqslant 0

\rm :\longmapsto\:\dfrac{x + 2 -  {x}^{2}   + 2x}{x(x - 2)(x + 2)}\leqslant 0

\rm :\longmapsto\:\dfrac{3x + 2 -  {x}^{2}}{x(x - 2)(x + 2)}\leqslant 0

\rm :\longmapsto\:\dfrac{ - ({x}^{2} - 3x - 2)}{x(x - 2)(x + 2)}\leqslant 0

\rm :\longmapsto\:\dfrac{{x}^{2} - 3x - 2}{x(x - 2)(x + 2)}\geqslant 0

\green{ \boxed{  \because \: \bf \: x &gt; 0 \: then \:  - x &lt; 0}}

Consider,

 \red{\rm :\longmapsto\: {x}^{2} - 3x - 2 = 0}

Its a quadratic equation,

Solution is given by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

\rm :\longmapsto\:x = \dfrac{ 3 \:  \pm \:  \sqrt{ {( - 3)}^{2}  - 4(1)( - 2)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ 3 \:  \pm \:  \sqrt{{{9 + 8}}}}{2(1)}

\rm :\longmapsto\:x = \dfrac{ 3 \:  \pm \:  \sqrt{{{17}}}}{2}

So, critical points are

\rm :\longmapsto\:x =  - 2, \: 0, \: 2, \: \dfrac{3 +  \sqrt{17} }{2}, \: \dfrac{3 -  \sqrt{17} }{2}

Let assume that

\rm :\longmapsto\:\dfrac{3 +  \sqrt{17} }{2} = a

and

\rm :\longmapsto\:\dfrac{3  -   \sqrt{17} }{2} = b

Now, order of values are

\rm :\longmapsto\: - 2 &lt; b &lt; 0 &lt; 2 &lt; a

Let check the sign in the intervals.

\begin{gathered}\boxed{\begin{array}{c|c} \bf interval &amp; \bf sign \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf x &lt;  - 2 &amp; \sf  - ve \\ \\ \sf  - 2 &lt; x \leqslant b &amp; \sf  + ve \\ \\ \sf b \leqslant x &lt; 0 &amp; \sf  - ve\\ \\ \sf 0 &lt; x &lt; 2 &amp; \sf  + ve\\ \\ \sf 2 &lt; x \leqslant a &amp; \sf  - ve\\ \\ \sf x \geqslant a &amp; \sf  + ve \end{array}} \\ \end{gathered}

So, required solution is

\rm :\longmapsto\:x \:  \in \: ( - 2,b] \:  \cup \: (0,2) \:  \cup \: [a, \infty )

where,

\rm :\longmapsto\:\dfrac{3 +  \sqrt{17} }{2} = a

and

\rm :\longmapsto\:\dfrac{3  -   \sqrt{17} }{2} = b

Similar questions