Math, asked by lakhiktbora93, 7 hours ago

Solve(ie, find the value of x)​

Attachments:

Answers

Answered by gs7729590
3

Answer:

Answer:

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root x

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:x = 3 + 2 \sqrt22

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:x = 3 + 2 \sqrt22= 1 + 2\sqrt22 + 2

Answer:The value of  \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:x = 3 + 2 \sqrt22= 1 + 2\sqrt22 + 2=(1 + \sqrt22 )2\sqrt x = 1+ \sqrt2x=1+2\sqrt x - \frac{1}{\sqrt x} = (1 + \sqrt2) - \frac{1}{(1 + \sqrt2)}x−x1=(1+2)−(1+2)1After simplification, we get  \sqrt x - \frac{1}{\sqrt x}x−x1 = 2 \frac{(1 + \sqrt2)}{(1 + \sqrt2)}(1+2)(1+2)\sqrt x - \frac{1}{\sqrt x}x−x1 = 2  To know more:

"[If x=(7+4 root3) then find value root x + 1/rootx]"

Answered by MrAlluring
27

{\large{\red{\mapsto{\maltese{\underline{\green{\boxed{\blue{\underbrace{\overbrace{\pink{\pmb{\bf{Answer:}}}}}}}}}}}}}}

 \sqrt{x - 3}  +  \sqrt{2(x - 1)}  = 2 \\ x - 3 + 2(x - 1) = 4 \\ 3x - 5 = 4 \\ 3x = 9 \\ x = 3

Step-by-step explanation:

{\huge{\fcolorbox{yellow}{red}{\orange{\boxed{\boxed{\boxed{\boxed{\underbrace{\overbrace{\mathfrak{\pink{\fcolorbox{green}{blue}{@ItzSongLover}}}}}}}}}}}}}

Similar questions
Math, 8 months ago