Solve(ie, find the value of x)
Answers
Answer:
Answer:
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root x
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:x = 3 + 2 \sqrt22
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:x = 3 + 2 \sqrt22= 1 + 2\sqrt22 + 2
Answer:The value of \sqrt x - \frac{1}{\sqrt x}x−x1 is 2.Step-by-step explanation:Given:if x=3+2 root 2, find the value of root x-1/root xSolution:x = 3 + 2 \sqrt22= 1 + 2\sqrt22 + 2=(1 + \sqrt22 )2\sqrt x = 1+ \sqrt2x=1+2\sqrt x - \frac{1}{\sqrt x} = (1 + \sqrt2) - \frac{1}{(1 + \sqrt2)}x−x1=(1+2)−(1+2)1After simplification, we get \sqrt x - \frac{1}{\sqrt x}x−x1 = 2 \frac{(1 + \sqrt2)}{(1 + \sqrt2)}(1+2)(1+2)\sqrt x - \frac{1}{\sqrt x}x−x1 = 2 To know more:
"[If x=(7+4 root3) then find value root x + 1/rootx]"
Step-by-step explanation: