Math, asked by 18eucs519, 1 month ago

Solve
If,
25^20x
=
42025 and 64
= 518
Then:
5
(542-1)
(4)-V7
is
B
Previous​

Answers

Answered by 001twohandgamer
11

Answer:

Solve

If,

25^20x = 48400 and 64^√ y = 5^18

Then:

(5^(4x-1))5 /(4)-√y is

explanation

\frac{ { {5}^{4x - 1} }^{5} }{ {4}^{ - \sqrt{y} } }

4

y

5

4x−1

5

=

{ {5}^{4x - 1} }^{5} = {5}^{20x - 5}5

4x−1

5

=5

20x−5

= { {5}^{2} }^{20x \times \frac{1}{2} } . {5}^{ - 5}=5

2

20x×

2

1

.5

−5

{ 25}^{20x \times \frac{1}{2} } . {5}^{ - 5}25

20x×

2

1

.5

−5

= \sqrt{48400} . {5}^{ - 5}=

48400

.5

−5

= 220. {5}^{ - 5}=220.5

−5

= 44. {5}^{ - 4}=44.5

−4

{4}^{ - \sqrt{y} } = { {4}^{3} }^{ \sqrt{y} ^{ \frac{ - 1}{3} } }4

y

=4

3

y

3

−1

{64}^{ \sqrt{y} ^{ \frac{ - 1}{3} } }64

y

3

−1

= { {5}^{18} }^{ \frac{ - 1}{3} }=5

18

3

−1

= {5}^{ - 6}=5

−6

total =

\frac{44. {5}^{ - 4} }{ {5}^{ - 6} }

5

−6

44.5

−4

= 44 \times {5}^{2}=44×5

2

=1100

Answered by kodurichandu13
2

Answer:

If 25^{20x} = 42025 and 64^{\sqrt{y} } = 5^{18} then, (5^{(4x-1)} )^{5}/ 4^{-\sqrt{y} } is 1025.

Step-by-step explanation:

we have two equations as follows.

  1. 25^{20x} = 42025
  2. 64^{\sqrt{y} } = 5^{18}
  • On simplifying, (5^{2}) ^{20x} = 42025

(5^{20x}) ^{2} = 42025

(5^{20x}) = \sqrt{42025} = 205.

Thus, let  (5^{20x}) = 205 be the equation (1).

  • On simplifying, 64^{\sqrt{y} } = 5^{18}

(4^{3} )^{\sqrt{y} } = 5^{18}

(4^{\sqrt{y} })^{3} } = 5^{18}

4^{\sqrt{y}} = \sqrt[3]{5^{18}} = 5^{6}

Thus, 4^{-\sqrt{y}} = \frac{1}{4^{\sqrt{y}}} = \frac{1}{5^{6} } and this be the equation (2).

Now, on substituting the R.H.S values from equations (1) and (2),

(5^{(4x-1)} )^{5} / 4^{-\sqrt{y} }  = 5^{(20x-5)} / \frac{1}{5^{6} }

                           =\frac{ 5^{20x}}{5^{5} . 5^{-6} }

                           = \frac{205}{5^{-1} }

                           = 205 x 5

                           = 1025.

Therefore, (5^{(4x-1)} )^{5}/ 4^{-\sqrt{y} } is 1025.

Similar questions