Solve if x=log 6(base 12) y=log 12(base 18) and z=log18(base24),prove that 1+xyz=2yz.
Answers
1 + xyz = 1 + log 12 16 x log 18 12 x log 24 18
= 1 + log 6/log 12 x log 12/log 18 x log 18/log 24 = 1 + log 6/log 24
= log 24 24 + log 24 6
= log 24 ( 6 x 24) = log 24 (12x12)
Now 2yz = 2 x log 18 12 x log 24 18 = 2 x log 12/log 18 x log 18 / log 24 = 2 log base 24 12
= log base 24(12^2) = log base 24 (12x12)
Hence 1 + xyz = 2yz
solution:
Your question is wrong, it should be,
X = log12(base 6) , y = log18(base 12) and z = log24( base 18 )
So, 1+xyz = 1 + log12(base 6 )+ og18( base 12) + log24( base 18)
= 1+ log6/log12 x log12/log18 x log18/log24
= log24( base 24) =log24( base 6 )
= log24(6 x 24)
= log24 (12 x 12)
Now,
2yz = 2 x log18(base 12) x log24( base18 )
= 2 x log12/log18 x log18/log24
= 2log24( base12)
= log24(12(base2) )
= log24(12 x 12)
Hence, 1+xyz = 2yz