Solve (ii) (sec A + tan A) (1 - sin A)
Answers
Answered by
2
Step-by-step explanation:
Given :-
(Sec A + Tan A) ( 1- Sin A)
To find :-
Simplify the expression ?
Solution :-
Given that
(Sec A + Tan A) ( 1- Sin A)
=> [(1/Cos A) + (Sin A/ Cos A )] (1-Sin A)
=>[ (1+Sin A )/Cos A ](1-Sin A)
=> (1+Sin A)(1-Sin A)/Cos A
=> (1²-Sin²A)/(Cos A)
Since (a+b)(a-b) = a²-b²
=> (1-Sin² A )/Cos A
We know that
Sin² A + Cos² A = 1
=> Cos² A/Cos A
=> (Cos A ×Cos A)/Cos A
=> Cos A
Answer:-
(Sec A + Tan A) ( 1- Sin A) = Cos A
Used Identities:-
→ Sec A = 1/ Cos A
→ Tan A = Sin A / Cos A
→ Sin² A + Cos² A = 1
→ (a+b)(a-b) = a²-b²
Similar questions