solve illustration 2
Attachments:
Answers
Answered by
1
factors of a3 + b3 = ( a + b ) ( a2 +ab + b2 ), hence
2 ( sin2A + cos2 A) ( sin4 A + cos4 A + sin2A cos2A) - 3 ( sin4A + cos4A )
+ 1
= 2* 1 * ( sin4A + cos4A + sin2A cos2A ) - 3 ( sin4A + cos4 A ) + 1
= 2 sin2A cos2A - sin4A - cos4 A + 1
= - ( sin2A + cos2A 2 + 1 = 0 = RHS
2 ( sin2A + cos2 A) ( sin4 A + cos4 A + sin2A cos2A) - 3 ( sin4A + cos4A )
+ 1
= 2* 1 * ( sin4A + cos4A + sin2A cos2A ) - 3 ( sin4A + cos4 A ) + 1
= 2 sin2A cos2A - sin4A - cos4 A + 1
= - ( sin2A + cos2A 2 + 1 = 0 = RHS
Similar questions