Math, asked by Anonymous, 10 hours ago

Solve improper integral

\displaystyle\int\limits^\infty_0 {\frac{x^{49}}{(1+x)^{51}} } \, dx

Answers

Answered by Anonymous
9

Solution:-

There are many ways to solve this integral, I will use two common methods to solve it, out of which first method includes Euler integral of first kind.

Method 1:

We are aware about the definition of beta function.

 \boxed{\rm B(x, y) = \int_0^\infty \dfrac{u^{x-1}}{(1+u)^{x+y}}\, du}

The given integral is,

 \displaystyle\rm I= \int_0^\infty \dfrac{x^{49}}{(1+x)^{51}} \: dx

Can also be written as,

 \displaystyle\rm I= \int_0^\infty \dfrac{x^{50-1}}{(1+x)^{50+1}} \: dx

On comparing this integral with definition of beta function, we get:

 \displaystyle\rm\int_0^\infty \dfrac{x^{49}}{(1+x)^{51}} \: dx = B(50,1)

Now, we can use the Gamma Beta relation.

\boxed{\rm B(x, y) = \dfrac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)} }

Using this, we get:

\rm B(50, 1) = \dfrac{\Gamma(50) \cdot \Gamma(1)}{\Gamma(51)}

\rm\iff B(50, 1) = \dfrac{\Gamma(50) \cdot \Gamma(1)}{50 \cdot\Gamma(50)}

\rm\implies B(50, 1) = \dfrac{1}{50}

Hence the required answer is 1/50.

 \rule{280}{1}

Method 2:

We have to given integral,

 \displaystyle\rm I= \int_0^\infty \dfrac{x^{49}}{(1+x)^{51}} \: dx

Can also be written as,

\displaystyle\rm I= \int_0^\infty \dfrac{x^{49}}{ {x}^{51} (1+ \frac{1}{x} )^{51}} \: dx

\iff\displaystyle\rm I= \int_0^\infty \dfrac{1}{ {x}^{2} (1+ \frac{1}{x} )^{51}} \: dx

 \sf Now\, let \:  \left(1 +  \frac{1}{x}  \right) = t \implies  - \dfrac{dx}{ {x}^{2} }  = dt

The above integral changes to,

\displaystyle\rm I= \int_\infty^{1}  -  \dfrac{1}{ t^{51}} \: dt

\iff\displaystyle\rm I= -\dfrac{ t^{ - 50}}{ - 50}\bigg |^{1}_{ \infty}

\iff\displaystyle\rm I= \dfrac{ t^{ - 50}}{ 50}\bigg |^{1}_{ \infty}

\implies\displaystyle\rm I= \dfrac{1}{50}

Hence the required answer is 1/50.

Similar questions