Math, asked by shravanikhps, 8 days ago

Solve.
In A PQR, A Q is an acute angle. Show that PR2 <PQ2+ + QR2?​

Answers

Answered by user0888
13

Let the lengths of opposing sides be

  • p=\overline{QR}
  • q=\overline{RP}
  • r=\overline{PQ}

By the law of cosines, where \cos{Q}&gt;0,

p^{2}=q^{2}+r^{2}-2qr\cos Q.

Hence, p^{2}&lt;q^{2}+r^{2}.

Answered by oneanother11111111
4

Correct answer:-

Let,

  • \overline{QR}=p.
  • \overline{PR}=q.
  • \overline{PQ}=r.

Then,

q^{2}=p^{2}+r^{2}-2pr\cos{Q}, where \cos{Q}&gt;0.

So,

q^{2}=p^{2}+r^{2}-2pr\cos{Q}&lt;p^{2}+r^{2}

\implies q^{2}&lt;p^{2}+r^{2}

Hence proven that \overline{PR}^{2}&lt;\overline{PQ}^{2}+\overline{QR}^{2}.

Similar questions