Solve inequality in quadratic equations.
| x - 3 | / | x^2 - 4 | <= 1
Find possible real values of x.
Answers
Answered by
15
I do the answer in detail. Simple way.
given | x - 3 | / | x² - 4 | ≤ 1
Clearly x ≠ 2 or -2.
Case 1: | x | < 2, ie, -2 < x < 2
So Numerator is negative. Denominator is negative.
=> (3 - x)/(4 - x²) ≤ 1
=> 4 - x² + x - 3 ≥ 0
=> x² - x - 1 ≤ 0
=> Roots = (1+ √5 )/2 valid as it is in the range |x| < 2
=> So (1 - √5)/2 ≤ x ≤ (1+√5)/2
===
case 2 : 2 < x < 3
(3-x)/(x² - 4) ≤ 1
x² - 4 + x - 3 ≥ 0
x² + x - 7 ≥ 0
roots: = [-1 + √29]/2 , (-1-√29) /2 is out of range.
=> 2 < x < [ √29 - 1 ]/2
case 3: x > 3
x - 3 ≤ x² - 4
x² -x - 1 ≥ 0
roots : (1+√5)/2
So valid range: x > (√5 + 1)/2
case 4 : - ∞ < x < -2
(3-x) ≤ (x²-4)
x² - 7 + x ≥ 0
roots: (-1 + √29)/2
so x < (-1 -√29)/2 or x > (√29 -1)/2
Checking with range of case 4, we get
-∞ < x < (-1 - √29)/2
given | x - 3 | / | x² - 4 | ≤ 1
Clearly x ≠ 2 or -2.
Case 1: | x | < 2, ie, -2 < x < 2
So Numerator is negative. Denominator is negative.
=> (3 - x)/(4 - x²) ≤ 1
=> 4 - x² + x - 3 ≥ 0
=> x² - x - 1 ≤ 0
=> Roots = (1+ √5 )/2 valid as it is in the range |x| < 2
=> So (1 - √5)/2 ≤ x ≤ (1+√5)/2
===
case 2 : 2 < x < 3
(3-x)/(x² - 4) ≤ 1
x² - 4 + x - 3 ≥ 0
x² + x - 7 ≥ 0
roots: = [-1 + √29]/2 , (-1-√29) /2 is out of range.
=> 2 < x < [ √29 - 1 ]/2
case 3: x > 3
x - 3 ≤ x² - 4
x² -x - 1 ≥ 0
roots : (1+√5)/2
So valid range: x > (√5 + 1)/2
case 4 : - ∞ < x < -2
(3-x) ≤ (x²-4)
x² - 7 + x ≥ 0
roots: (-1 + √29)/2
so x < (-1 -√29)/2 or x > (√29 -1)/2
Checking with range of case 4, we get
-∞ < x < (-1 - √29)/2
kvnmurty:
:-)
Answered by
0
Step-by-step explanation:
hiii...................
Similar questions