Math, asked by chvadinarayana, 11 months ago

Solve:
integral 4 sin x cos x e^2 cos X dx​

Answers

Answered by Swarup1998
0

Integration

Solution:

Let, cosx=z such that

\quad sinx\:dx=-dz

\therefore \int 4\:sinx\:cosx\:e^{2\:cosx}\:dx

=-\int 4\:z\:e^{2z}\:dz

=-4\int z\:e^{2z}\:dz

=-4\:z\int e^{2z}\:dz+4\int \left[\frac{d}{dz}(z)\:\int e^{2z}\:dz\right]\:dz

=-4\:z\:\frac{e^{2z}}{2}+4\int \frac{e^{2z}}{2}\:dz

=-2\:z\:e^{2z}+e^{2z}+c

\quadwhere c= integral constant

=-2\:cosx\:e^{2\:cosx}+e^{2\:cosx}+c

This is the required integral.

Read more on Brainly.in

1. Find: \int \frac{dx}{x\sqrt{x^{4}-1}}.

- https://brainly.in/question/8860986

2. Explain integration.

- https://brainly.in/question/9075017

Similar questions