Math, asked by maari1512, 8 months ago

solve integral of cosh X/1+e2x​ dx.

Answers

Answered by MaheswariS
2

\textbf{To find:}

\mathrm{\displaystyle\int\,\dfrac{coshx}{1+e^{2x}}\,dx}

\textbf{Solution:}

\text{We know that,}

\mathrm{coshx=\dfrac{e^x+e^{-x}}{2}}

\mathrm{coshx=\dfrac{e^x+\frac{1}{e^x}}{2}}

\mathrm{coshx=\dfrac{e^{2x}+1}{2e^x}}

\implies\boxed{\mathrm{coshx=\dfrac{1+e^{2x}}{2e^x}}}

\text{Now}

\mathrm{\displaystyle\int\,\dfrac{coshx}{1+e^{2x}}\,dx}

\mathrm{=\displaystyle\int\,\dfrac{coshx}{2\,coshx\,e^{2x}}\,dx}

\mathrm{=\displaystyle\int\,\dfrac{1}{2\,e^{2x}}\,dx}

\mathrm{=\displaystyle\dfrac{1}{2}\int\,e^{-2x}\,dx}

\mathrm{=\dfrac{1}{2}(\dfrac{e^{-2x}}{-2})+C}

\mathrm{=\dfrac{e^{-2x}}{-4}+C}

\therefore\mathrm{\displaystyle\int\,\dfrac{coshx}{1+e^{2x}}\,dx=\dfrac{e^{-2x}}{-4}+C}

Find more:

1.Integrate of e^x sec x(1+tanx) dx

https://brainly.in/question/6040969

2.Integrate cos2x/(cosx+sinx)^2

https://brainly.in/question/833990

3.Integration to (a^x+b^x)^2/a^x b^x​

https://brainly.in/question/11131378

Similar questions