solve integration of sin(5x/2)/sin(x/2)
Answers
Answered by
7
Answer:
The answer is x + 2 Sinx + Sin2x + Ic
Step-by-step explanation:
Let x = 2t
Then dx = 2dt
Sin 5x/2 ÷ Sin x/2 = Sin 5t/ Sint = Sin (4t +t)/ Sint
= Sin 4t . Cost (t) + Cos 4t . Sin t/ Sin t = Sin 4t .Cos t/ Sin t + Cos 4t
= 2 Sin 2t . Cos 2t . Cos (t)/ Sin t + Cos 4t = 4 Sin t . Cos t . Cos 2t . Cos t/Sin t + Cos 4t
= 4 Cos^2t . Cos 2t + Cos 4t = 4 . (1+ Cos 2t/2). Cos 2t + Cos 4t
= 2 Cos 2t + 2 Cos^2.2t + Cos 4t = 2Cos 2t + (1+ Cos 4t) + Cos 4t
= 1 + 2Cos 2t + 2 Cos 4t
I = ∫ Sin 5x/2 ÷ Sin x/2.dx = ∫( 1 + 2Cos 2t + 2Cos 4t).2 .dt
= 2 . [t + Sin 2t + Sin 4t /2 ] + Ic = 2t + 2Sin2t + Sin4t + Ic
= x + 2 Sinx + Sin2x + Ic
Similar questions
Physics,
6 months ago
Science,
6 months ago
Science,
6 months ago
Computer Science,
1 year ago
Biology,
1 year ago