Physics, asked by jaha88, 1 year ago

Solve it .....................​

Attachments:

Answers

Answered by Anonymous
8

\huge\underline\purple{\sf ♡ Answer:}

\large{\boxed{\sf\theta = 30° }}

\huge\underline\purple{\sf ♡ Solution:}

Given :-

Wavelength \sf{\lambda = 6000 Angstrom}

Convert it into m :-

\large{\sf \lambda=6×{10}^{-7}m}

Width (a) = \sf{24×{10}^{-5}×{10}^{-2}m}

To find :-

Angular position \sf{\theta}=?

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that ,

\large{♡}\large{\boxed{\sf a\:sin\theta=2\lambda}}

ON PUTTING VALUE :-

\large\implies{\sf sin\:\theta={\frac{2\lambda}{a}}}

\large\implies{\sf {\frac{2×6×{10}^{-7}}{24×{10}^{-7}}}}

\large\implies{\sf {\frac{1}{2}}}

Here we got sin \sf{\theta={\frac{1}{2}}}

We know that sin 30° =1/2

Therefore ,

Angular position of second minimum from central maximum is 30°

\huge\red{♡}\huge\red{\boxed{\sf \theta=30°}}

Similar questions