English, asked by ammulya3637, 1 year ago

:)))))))))):)))):)))):)))))))))) solve it​

Attachments:

Answers

Answered by srivastavagullu
0

Answer:

Explanation:

Nothing Jo aapka ma'am kare woh likhde

Answered by Anonymous
4

Answer:

\bold\red{(A){T}^{2}≥8}

Explanation:

Equation of normal to the parabola,

{y}^{2}=4ax

at the point ( a{t}^{2} ,2at )} is

y + tx = 2at + a {t}^{3}  \:  \:  \:  \:  \:  \: .............(i)

Now,

normal cuts the parabola again at (a{T}^{2},2aT)

Then,

2aT + t\:a{T}^{2}=2at+a{t}^{3}

 =  > 2a(T - t) =  - at( {T}^{2}  -  {t}^{2} ) \\  \\  =  > 2 =  - t(T + t) \\  \\  =  >  {t}^{2}  + tT + 2 = 0

Since,

t is real,

  =  >  {T}^{2}  - 4 \times 2 \times 1 \geqslant 0 \\  \\  =  > \bold{ {T}^{2}  \geqslant 8}

Hence,

Correct Option is (A)

Similar questions