Physics, asked by rishuranjan64, 9 months ago

Solve it.................​

Attachments:

Answers

Answered by Anonymous
9

\huge\bf{\red{\overbrace{\underbrace{\purple{Given:}}}}}

★The speed of the helicopter is 'u'.

★It is flying at a height 'h'.

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Find:}}}}}

★The distance at which the packet should be dropped so that it reaches to the victim.

\huge\bf{\red {\overbrace{\underbrace{\purple{Answer:}}}}}

\huge{\red{\sf{Given}}}\begin{cases}\longrightarrow Initial velocity = u\\ \longrightarrow Speed = u \end{cases}

We know,

\large\red{\boxed{\purple{\bf{Distance=Speed\times time }}}}

Let. the required distance be d.

\implies d =u\times t

{\underline{\boxed{\red{.\degree. t =\dfrac{d}{u}}}}}

______________________________________

Now, In vertical direction,

The vertical velocity is 0 .

So,

\large\red{\boxed{\purple{s=ut+\frac{1}{2}at^{2}}}}

\implies s = 0\times t +\dfrac{1}{2}gt^{2}

\implies h =\dfrac{gt^{2}}{2}

\implies h =\dfrac{g\times (d) ^{2}}{2\times (u) ^{2}}

\implies h =\dfrac{g\times d^{2}}{2\times u ^{2}}

\implies d^{2}=\dfrac{2h \times u^{2}}{g}

\implies d =\sqrt{\dfrac{2h \times u^{2}}{g}}

{\underline{\boxed{\purple{.\degree. d=u\sqrt{\dfrac{2h}{g}}}}}}

Attachments:
Similar questions