Solve it................
Attachments:
Answers
Answered by
10
Solution:-
24) take 3x^7 as common
=3x^7(x^6-64y^6)
=3x^2{(x^3)^2-(8y^3)^2}. (a^2-b^2=(a+b)(a-b)
=3x^2(x^3-8y^3)(x^3+8y^3)
=>using identity a^3-b^3=(a-b)(a^2+ab+b^2)
and a^3+b^3=(a+b)(a^2-ab+b^2)
=3x^2(x-8y)(x^2+64y^2+8xy)(x+8y)(x^2+64y^2-8xy)
26) (x^4)^3-(y^4)^3
again using the identity we get
=(x^4-y^4)(x^8+y^8+x^4y^4)
=(x^2+y^2)(x^2-y^2)(x^8+y^8+x^4y^4)
=(x+y)(x-y)(x^2+y^2)(x^8+y^8+x^4y^4)
28)(7x)^3-(3y)^3-2(7x-3y)
= (7x-3y)(49x^2+9y^2+21xy)-2(7x-3y)
taking common (7x-3y)
=(7x-3y)(49x^2+9y^2+21xy-2)
Answered by
24
Question -
- Factorise -
Solution -
Similar questions