Math, asked by pradhatmedhi1978, 8 months ago

solve it .......................​

Attachments:

Answers

Answered by Anonymous
13

Question :

\sf \:  \dfrac{1}{x} +  \dfrac{1}{a}  +  \dfrac{1}{b}  =  \dfrac{1}{x + a + b}

Solve it .

Solution :

\sf \dfrac{1}{x}+\dfrac{1}{a}+\dfrac{1}{b}  =  \dfrac{1}{x + a + b}   \\  \\  \implies \sf \:  \dfrac{1}{a} +  \dfrac{1}{b}  =  \dfrac{1}{x + a + b}   -  \dfrac{1}{x} \\  \\  \implies \sf \:  \dfrac{b + a}{ab}   =  \dfrac{x - (x + a + b)}{x(x + a + b)} \\  \\  \implies \sf \:  \dfrac{b + a}{ab}  =  \dfrac{x - x - a - b}{ {x}^{2}  + ax + bx}  \\  \\  \implies \sf \:  \dfrac{b + a}{ab}   =  \dfrac{ - b - a}{ {x}^{2}  + ax + bx}  \\  \\  \implies \sf \:  \dfrac{b + a}{ab} =  \dfrac{ - (b + a)}{  {x}^{2}  + ax + bx}   \\  \\  \implies \sf \:  \dfrac{1}{ab} =  \dfrac{ - 1}{ {x}^{2}  + ax + bx}  \\  \\  \implies \sf \:  {x}^{2} + ax + bx =  - ab \\  \\  \implies \sf \:   {x}^{2}    + ax + bx + ab = 0 \\  \\  \implies \sf \: x(x + a) + b(x + a) = 0 \\  \\  \implies \sf \: (x + a)(x + b) = 0

Either ,

x + a = 0

→ x = -a

Or,

x + b = 0

→ x = -b

Therefore,

  • x = -a
  • x = -b
Answered by amitkumar44481
3

QuestioN :

 \tt  \dagger \: \: \: \: \:  \dfrac{1}{x}  +  \dfrac{1}{a}  +  \dfrac{1}{b}  =  \dfrac{1}{x + a +  b}

SolutioN :

We have, Quadratic Equation.

 \tt :  \implies \dfrac{1}{x}  +  \dfrac{1}{a}  +  \dfrac{1}{b}  =  \dfrac{1}{x + a +  b}

 \tt :  \implies     \dfrac{1}{a}  +  \dfrac{1}{b}  =  \dfrac{1}{x + a +  b}  -   \dfrac{1}{x}

 \tt :  \implies     \dfrac{a + b}{ab}    =  \dfrac{x - (x + a + b)}{x(x + a +  b)}

 \tt :  \implies \dfrac{a + b}{ab}    =  \dfrac{ \cancel{x} \cancel{ - x } -  a  -  b}{x(x + a +  b)}

 \tt :  \implies \dfrac{a + b}{ab}    =  \dfrac{-  a  -  b}{x(x + a +  b)}

 \tt :  \implies \dfrac{a + b}{ab}    =  \dfrac{- ( a   +  b)}{x(x + a +  b)}

 \tt :  \implies \dfrac{ \cancel{a + b}}{ab}    =  \dfrac{- \cancel{(  a   +   b)}}{x(x + a +  b)}

 \tt :  \implies \dfrac{1}{ab}    =  \dfrac{-  1}{x(x + a +  b)}

 \tt :  \implies  - ab = x(x + a + b)

 \tt :  \implies   - ab =  {x}^{2}  + ax + bx

 \tt :  \implies   0 =  {x}^{2}  + ax + bx + ab

 \tt :  \implies   0 =  x(x  + a) + b(x + a)

 \tt :  \implies   0 =  (x  +  a)(x  +  b)

\rule{90}2

# Either,

→ x + a = 0.

→ x = - a.

# Or,

→ x + b = 0.

→ x = - b.

Therefore, the value of x = - a , - b.

Similar questions