Math, asked by ActionInBrainly, 10 months ago

Solve it.........................




.

Attachments:

Answers

Answered by Anonymous
80

\huge\red{Answer}

Given :

{cos(90 - ∅) sec(90 - ∅) tan ∅} / {cosec(90 - ∅) sin(90 - ∅) cot(90 - ∅) + {tan(90 - ∅)} / cot∅

=> {sin × cosec × tan} / {sec × cos × tan} + {cot/cot}

=> {sin × (1/sin) × tan / sec × 1/sec × tan} + 1 [ Since, cot / cot = 1 ]

=> tan/tan + 1

=> 1 + 1 = 2 R.H.S

Hence, Proved

<marquee direction= "right"> Leave a like :)

Answered by Anonymous
86

UR QUESTION:-

\sf\implies \frac{cos(90\degree -  \theta)sec(90\degree- \theta )tan \theta}{cosec \theta(90 \degree- \theta)sin(90 \degree- \theta)cot(90 \degree - \theta)} +\frac{tan(90\degree - \theta)}{cot \theta}=2

UR ANSWER ✓

\sf\implies \frac{cos(90\degree -  \theta)sec(90\degree- \theta )tan \theta}{cosec \theta (90 \degree- \theta)sin(90 \degree- \theta)cot(90\degree - \theta)} +\frac{tan(90\degree - \theta)}{cot \theta}=2

\sf\implies \frac{sin \times cosec \times tan}{sec\times cos \times tan}+[\frac{cot}{cot}]

\sf\implies [sin \times \frac{1}{sin} \times \frac{tan}{sec} \times \frac{1}{sec} \times tan] +1[since     \frac{cot}{cot} =1]

\sf\implies \frac{tan}{tan}+1

\sf\implies 1 + 1 = 2 R.H.S

\huge\purple{\text{hence proved,}}

Similar questions