Math, asked by Anonymous, 9 months ago

Solve it............!!!!!!!!!!​

Attachments:

Answers

Answered by InfiniteSoul
3

\sf{\huge{\mathfrak{\pink{\underline{Question}}}}}

  • Find the coefficient of x2 in the expansion of

 ( x^2 + x + 1 )^2 + ( x^2 - x + 1 )^2

\sf{\huge{\mathfrak{\pink{\underline{Solution}}}}}

  • evaluate the equation first

 \sf\implies( x^2 + x + 1 )^2 + ( x^2 - x + 1 )^2

\sf{\bold{\red{\boxed{( a + b + c)^2= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca}}}}

\sf\implies ( {x^2}^2 + x^2 + 1^2 + 2(x^2)(x) + 2(x)(1) + 2(1)(x^2) )

 + ( {x^2}^2 + x^2 + 1^2 + 2(x^2)(-x) + 2(-x)(1) + 2(1)(x^2) )

\sf\implies x^4 + x^2 + 1 +\cancel{ 2x^3} +\cancel{ 2x} + 2x^2 + x^4 + x^2 + 1 \cancel{- 2x^3}\cancel{- 2x }+ 2x^2

\sf\implies x^4 + x^2 + 1 + 2x^2 + x^4 + x^2 + 2x^2

\sf\implies 2x^4 + 6x^2 + 1

  • coefficient of x^2

\sf\implies  + 6

\sf{\underline{\boxed{\mathfrak{\purple{\dag + 6}}}}}

_______________❤

Answered by Anonymous
1

\bf  {\underline {\underline{✤QƲЄƧƬƖƠƝ}}}

Find the coefficient of x²

 \bf{ {( {x}^{2} + x + 1)}^{2}  } +  {( {x}^{2}  - x + 1)}^{2}

\bf  {\underline {\underline{✤ ƛƝƧƜЄƦ}}}

Coefficient of x² is +6

\bf  {\underline {\underline{✤ƬƠ  \:  \:  ƇƛLƇƲLƛƬЄ}}}

  • Coefficient of x²

\bf  {\underline {\underline{✤ SƠԼƲƬƖƠƝ}}}

 \bf{ {( {x}^{2} + x + 1)}^{2}  } +  {( {x}^{2}  - x + 1)}^{2}

Formula :-

 \bf \purple{ {(a + b + c)}^{2} =  {a}^{2} +  {b}^{2} +  {c}^{2}  + 2ab + 2bc + 2ca}

 \bf{ {x}^{4} +  {x}^{2} + 1 +  {2x}^{3} +  {2x}^{2}  + 2x  + { ( {x}^{2}  - x + 1)}^{2} }

 \bf{ {x}^{4} +  {x}^{2} + 1 +  {2x}^{3} +  {2x}^{2}  + 2x  + {x}^{4} +  {x}^{2} + 1 -  {2x}^{3}  +  {2x}^{2}  - 2x}

\bf{ {x}^{4} +  {x}^{2} + 1 +  { \cancel{2x}^{3}} +  {2x}^{2}  + 2x  + {x}^{4} +  {x}^{2} + 1 {\cancel  { - 2x}^{3} } +  {2x}^{2}  - 2x}

\bf{ {x}^{4} +  {x}^{2} + 1 +  {2x}^{2}  +{ \cancel {2x}}  + {x}^{4} +  {x}^{2} + 1 +  {2x}^{2}  - { \cancel{2x}}}

\bf{  \pink{{x}^{4} }+  {x}^{2} + 1 +  {2x}^{2}  +  \pink{ {x}^{4} }+  {x}^{2} + 1 +  {2x}^{2}  }

\bf{ {2x}^{4} +  \pink{ {x}^{2} }+ 1 +  \pink{ {2x}^{2} } +  \pink{ {x}^{2} }+ 1 +   \pink{{2x}^{2}}  }

 \bf{ {2x}^{4}  +  {6x}^{2}  + \pink{1} +  \pink{1}}

 \bf{ {2x}^{4} +  {6x}^{2}   + 2}

Therefore, Coefficient of x² is +6.

 \bf \pink{hope \: } \purple{it \: } \blue{helps \: } \red{uh..}

Similar questions