Math, asked by Anonymous, 7 months ago

SOLVE IT ...꒯ꄲꋊ'꓄ ꇙꉣꋬꂵ........​

Attachments:

Answers

Answered by pulakmath007
18

\displaystyle\huge\red{\underline{\underline{Solution}}}

Let

y =  \sqrt{ {x}^{2} - 1 }

Now

 {(x +  \sqrt{ {x}^{2} - 1 }) }^{6}

 =  {(x + y)}^{6}

 \displaystyle \:  =  {x}^{6}  +  \binom{6}{1}  {x}^{5} y + \binom{6}{2}  {x}^{4}  {y}^{2}  + \binom{6}{3}  {x}^{3}  {y}^{3}  + ...... + \binom{6}{6}   {y}^{6}

Again

 {(x  -   \sqrt{ {x}^{2} - 1 }) }^{6}

 =  {(x  -  y)}^{6}

 \displaystyle \:  =  {x}^{6}   -  \binom{6}{1}  {x}^{5} y + \binom{6}{2}  {x}^{4}  {y}^{2}   -  \binom{6}{3}  {x}^{3}  {y}^{3}  + ...... + \binom{6}{6}   {y}^{6}

So

 {(x +  \sqrt{ {x}^{2} - 1 }) }^{6}  +  {(x  -   \sqrt{ {x}^{2} - 1 }) }^{6}

 =  {(x + y)}^{6}  +    {(x + y)}^{6}

 \displaystyle \:  = 2  \{ {x}^{6}    + \binom{6}{2}  {x}^{4}  {y}^{2}     +  \binom{6}{4}  {x}^{2}  {y}^{4}+ \binom{6}{6}   {y}^{6}  \}

 \displaystyle \:  = 2  ( \:  {x}^{6}    + 15 \:   {x}^{4}  {y}^{2}     +  15 \:  {x}^{2}  {y}^{4}+   {y}^{6}  )

 \displaystyle \:  = 2   \{ \:  {x}^{6}    + 15 \:   {x}^{4}  ( {x}^{2} - 1)     +  15 \:  {x}^{2}   {( {x}^{2} - 1) }^{2} +   {( {x}^{2}  - 1)}^{3}   \}

 \displaystyle \:  = 2   \{ \:  {x}^{6}    + 15 \:  ( {x}^{6}   - {x}^{4} )     +  15 \:  {x}^{2}   ( {x}^{4}   - 2 {x}^{2} + 1) +   ( {x}^{6}    - 3 {x}^{4}   + 3 {x}^{2}  - 1)\}

So

The coefficient of

 {x}^{4}   \:  \: \: is \:  \:2 \times (  - 15 - 30 - 3) =  - 96

The coefficient of

 {x}^{2}  \:  \: is \:  \: 2( 15 + 3) = 36

RESULT

 \alpha  =  - 96 \:  \:  \: and \:  \:  \beta  = 36

Answered by Anonymous
0

Answer:

When you hear the word condensate, think about condensation and the way gas molecules come together and condense and to a liquid. ... If plasmas are super hot and super excited atoms, the atoms in a Bose-Einstein condensate (BEC) are total opposites. They are super unexcited and super cold atoms.

Step-by-step explanation:

Similar questions