Math, asked by DJS20041, 1 year ago

solve it 2nd question

Attachments:

Answers

Answered by ShuchiRecites
1
Hello Mate!

 \frac{ \sqrt{6} }{  \sqrt{2}  +  \sqrt{3} }  +  \frac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \frac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \\  \frac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  \times  \frac{ \sqrt{2} -  \sqrt{3}  }{ \sqrt{2}  -  \sqrt{3} }  \\   - (\sqrt{12}  -  \sqrt{18} ) \\  \sqrt{18}  -  \sqrt{12}  \\  \frac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  \times  \frac{ \sqrt{6}  -  \sqrt{3} }{ \sqrt{6} -  \sqrt{3}  }  \\  \frac{3 \sqrt{2} ( \sqrt{6} -  \sqrt{3})  }{3}  =  \sqrt{12}  -  \sqrt{6}  \\  \frac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \times  \frac{ \sqrt{6}  -  \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  \\  \frac{4 \sqrt{3}( \sqrt{6}   -  \sqrt{2} )}{4}  =   \sqrt{18}  -  \sqrt{6}  \\  \sqrt{18}  -  \sqrt{12}  +  \sqrt{12}  -  \sqrt{6}  -  \sqrt{18}  +   \sqrt{6}  \\  = 0

Hope it helps☺!
Similar questions