Math, asked by boni38, 6 months ago

solve it ?!?!???? ..,.,.​

Attachments:

Answers

Answered by BrainlyEmpire
24

\huge{\underline{\pink{\tt{Answer:}}}}

Measurement of Each Side - 42m , 30m , 42m , 30m.

Given:-

The Adjacent sides of a Rectangle are in the Ratio of 7:5.

Perimeter of Rectangle is 144 m.

To Find:-

Length of Rectangle

Breadth of Rectangle

Solution :-

\longrightarrow Suppose the Common measurement of Length and Breadth be a

Therefore,

The Length of Rectangle be 7a.

The Breadth of Rectangle be 5a.

\bigstar \large{\underline{\orange{\tt{According\:to\;the\:Question :}}}}

We Know that : —

\longmapsto \boxed{\pink{\sf{Perimeter\:of\:Rectangle = 2(Length + Breadth)}}}

So,Now Put the Value in this Formula : —

\longmapsto \sf{144 = 2(7a + 5a)}

\longmapsto \sf{144 = 2(12a)}

\longmapsto \sf{144 = 24a}

\longmapsto \sf{a = \dfrac{144}{24}}

\longmapsto \boxed{\sf{a =6}}

Hence,

\mapsto \underline{\boxed{\mathfrak{The\:Length\:of\:Rectangle = 7a = 7(6) = 42\:m}}}

\mapsto \maspto \underline{\boxed{\mathfrak{The\:Breadth\:of\:Rectangle = 5a = 5(6) = 30\:m}}}

\rule{200}2

Answered by Fαírү
77

\large\bold{\underline{\underline{Answer:-}}}

Measurement of Each Side - 42m , 30m , 42m , 30m.

\large\bold{\underline{\underline{Given:-}}}

The Adjacent sides of a Rectangle are in the Ratio of 7:5.

Perimeter of Rectangle is 144 m.

\large\bold{\underline{\underline{To \: Find:-}}}

➡Length of Rectangle

➡Breadth of Rectangle

\large\bold{\underline{\underline{Solution:-}}}

\longrightarrow Suppose the Common measurement of Length and Breadth be a

Therefore,

The Length of Rectangle be 7a.

The Breadth of Rectangle be 5a.

\bigstar \large{\underline{\red{\tt{According\:to\;the\:Question :}}}}

\large\bold{\underline{\underline{We \: know \: that:-}}}

\longmapsto \boxed{\orange{\sf{Perimeter\:of\:Rectangle = 2(Length + Breadth)}}}

So,Now Put the Value in this Formula :-

\longmapsto \sf{144 = 2(7a + 5a)}

\longmapsto \sf{144 = 2(12a)}

\longmapsto \sf{144 = 24a}

\longmapsto \sf{a = \dfrac{144}{24}}

\longmapsto \boxed{\sf{a =6}}

Hence,

\mapsto \underline{\boxed{\mathfrak{The\:Length\:of\:Rectangle = 7a = 7(6) = 42\:m}}}

\mapsto \maspto \underline{\boxed{\mathfrak{The\:Breadth\:of\:Rectangle = 5a = 5(6) = 30\:m}}}

\rule{200}2

Similar questions