Math, asked by osk11, 6 months ago

solve it.....,.........​

Attachments:

Answers

Answered by BrainlyEmpire
80

Given:-

  • A function
  • y= x³-3x²+3x-2/5

To Find:-

  • dy/dx of given function

Solution:-

  • On differentiating y w.r.t x, we get

\longrightarrow\rm{\dfrac{dy}{dx}=x^{3}-3x^{2}+3x-\dfrac{2}{5} }

\longrightarrow\rm{\dfrac{dy}{dx}=3x^{2}-3(2x)+3(1)-0}

\longrightarrow\rm\green{\dfrac{dy}{dx}=3x^{2}-6x+3}

━━━━━━━━━━━━━━━━━━━━━━━━━

Formulae to Remember-

\longrightarrow\rm\green{\dfrac{d(x^{n})}{dx}=nx^{n-1}}

\longrightarrow\rm\orange{\dfrac{d(sinx)}{dx}=cosx}

\longrightarrow\rm\green{\dfrac{d(cosx)}{dx}=-sinx}

\longrightarrow\rm\pink{\dfrac{d(tanx)}{dx}=sec^{2}x}

\longrightarrow\rm\green{\dfrac{d(cotx)}{dx}=-cosec^{2}x}

\longrightarrow\rm\blue{\dfrac{d(secx)}{dx}=secx.tanx}

\longrightarrow\rm\green{\dfrac{d(cosecx)}{dx}=-cosecx.cotx}

\longrightarrow\rm\red{\dfrac{d(ln(x))}{dx}=\dfrac{1}{x}}

\longrightarrow\rm\green{\dfrac{d(e^{x})}{dx}=e^{x}}

\longrightarrow\rm\red{\dfrac{d(f(x))}{dx}=f'(x)}

\longrightarrow\rm\green{\dfrac{d(constant)}{dx}=0}

Answered by sanju2363
1

Step-by-step explanation:

Given:-

  • A function
  • y= x³-3x²+3x-2/5

To Find:-

dy/dx of given function

Solution:-

On differentiating y w.r.t x, we get

\longrightarrow\rm{\dfrac{dy}{dx}=x^{3}-3x^{2}+3x-\dfrac{2}{5} }

\longrightarrow\rm{\dfrac{dy}{dx}=3x^{2}-3(2x)+3(1)-0}

\longrightarrow\rm\green{\dfrac{dy}{dx}=3x^{2}-6x+3}

━━━━━━━━━━━━━━━━━━━━━━━━━

Formulae to Remember-

\longrightarrow\rm\green{\dfrac{d(x^{n})}{dx}=nx^{n-1}}

\longrightarrow\rm\orange{\dfrac{d(sinx)}{dx}=cosx}

\longrightarrow\rm\green{\dfrac{d(cosx)}{dx}=-sinx}

\longrightarrow\rm\pink{\dfrac{d(tanx)}{dx}=sec^{2}x}

\longrightarrow\rm\green{\dfrac{d(cotx)}{dx}=-cosec^{2}x}

\longrightarrow\rm\blue{\dfrac{d(secx)}{dx}=secx.tanx}

\longrightarrow\rm\green{\dfrac{d(cosecx)}{dx}=-cosecx.cotx}

\longrightarrow\rm\red{\dfrac{d(ln(x))}{dx}=\dfrac{1}{x}}

\longrightarrow\rm\green{\dfrac{d(e^{x})}{dx}=e^{x}}

\longrightarrow\rm\red{\dfrac{d(f(x))}{dx}=f'(x)}

\longrightarrow\rm\green{\dfrac{d(constant)}{dx}=0}

Similar questions