Math, asked by mula54, 6 months ago

solve it................​

Attachments:

Answers

Answered by BrainlyEmpire
48

GIVEN :-

Tᴡᴏ ᴄᴀʀɴᴏᴛ ᴇɴɢɪɴᴇs \bf\red{a} ᴀɴᴅ \bf\red{b} ʜᴀᴠᴇ ᴛʜᴇɪʀ sᴏᴜʀᴄᴇs ᴀᴛ \bf\red{327\:K} ᴀɴᴅ \bf\red{227\:K} ᴀɴᴅ sɪɴᴋs ᴀᴛ \bf\red{127\:K} ᴀɴᴅ \bf\red{27\:K} .

TO FIND :-

Rᴀᴛɪᴏ ᴏғ ᴇғғɪᴄɪᴇɴᴄʏ ᴏғ \bf\red{a} ᴛᴏ ᴛʜᴀᴛ ᴏғ \bf\red{b} .

SOLUTION :-

ᴡᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\red\checkmark\:\bf\purple{Efficiency\:of\:Carnot\:engine\:(\eta)\:=\:1\:-\:\dfrac{T_2}{T_1}\:}

Fᴏʀ ᴄᴀʀɴᴏᴛ ᴇɴɢɪɴᴇ "a" :-

\huge\blue\star \bf\orange{\eta_{a}\:=\:1\:-\:\dfrac{T_2}{T_1}\:}

ᴡʜᴇʀᴇ,

\bf\pink{T_2} = 127 K

\bf\pink{T_1} = 327 K

\bf{:\implies\:\eta_{a}\:=\:1\:-\:\dfrac{127}{327}\:}

\rm{:\implies\:\eta_{a}\:=\:\dfrac{327\:-\:127}{327}\:}

\bf\red{:\implies\:\eta_{a}\:=\:\dfrac{200}{327}\:}

Fᴏʀ ᴄᴀʀɴᴏᴛ ᴇɴɢɪɴᴇ "b" :-

\huge\pink\star \bf\green{\eta_{b}\:=\:1\:-\:\dfrac{T_2}{T_1}\:}

ᴡʜᴇʀᴇ,

\bf\pink{T_2} = 27 K

\bf\pink{T_1} = 227 K

\bf{:\implies\:\eta_{b}\:=\:1\:-\:\dfrac{27}{227}\:}

\rm{:\implies\:\eta_{b}\:=\:\dfrac{227\:-\:27}{227}\:}

\bf\red{:\implies\:\eta_{b}\:=\:\dfrac{200}{227}\:}

Nᴏᴡ,

\bf{:\implies\:\dfrac{\eta_{a}}{\eta_{b}}\:=\:\dfrac{200/327}{200/227}\:}

\rm{:\implies\:\:\dfrac{\eta_{a}}{\eta_{b}}\:=\:\dfrac{\cancel{200}}{327}\:\times{\dfrac{227}{\cancel{200}}}\:}

\bf{:\implies\:\dfrac{\eta_{a}}{\eta_{b}}\:=\:\dfrac{227}{327}\:}

\bf\blue{:\implies\:\eta_{a}\::\:\eta_{b}\:=\:227\::327\:}

\huge\red\therefore Rᴀᴛɪᴏ ᴏғ ᴇғғɪᴄɪᴇɴᴄʏ ᴏғ \bf\red{a} ᴛᴏ ᴛʜᴀᴛ ᴏғ \bf\red{b} ɪs "227 : 327" .

Answered by BabeHeart
101

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \bold{ Given}

For Carnot engine A:

 \sf{Temperature \:  of \:  source  \: \rm ({T_1}_{A})} \:= 327 K \sf{Temperature \:  of  \: sink\:\rm({T_2}_{A}) \:}=127 K

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Carnot engine B:

 \sf{Temperature \:  of \:  source \:  \rm ({T_1}_{B})}= 227K\\\sf{Temperature \:  of \:  sink\:\rm ({T_2}_{B})}= 27K

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large  \bold{ To \: Find}\\ \sf{Ratio  \: of  \: efficiency  \: of \:  A  \: to  \:  }\\  \sf{that \:  of  \: B \:  \rm \eta_A : \eta_B}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \sf{Sølutiøn}

Efficiency of Carnot engine:

\boxed{ \bf{\eta = 1 - \dfrac{T_2}{T_1}}}

So,

\begin{gathered} \rm \implies \dfrac{\eta_A}{\eta_B} = \dfrac{1 - \dfrac{{T_2}_{A}}{{T_1}_{A}}}{1 - \dfrac{{T_2}_{B}}{{T_1}_{B}}} \\ \\ \rm \implies \dfrac{\eta_A}{\eta_B} = \dfrac{1 - \dfrac{127}{327}}{1 - \dfrac{27}{227}} \\ \\ \rm \implies \dfrac{\eta_A}{\eta_B} = \dfrac{ \dfrac{327 - 127}{327}}{ \dfrac{227 - 27}{227}} \\ \\ \rm \implies \dfrac{\eta_A}{\eta_B} = \dfrac{ \dfrac{ \cancel{200}}{327}}{ \dfrac{ \cancel{200}}{227}} \\ \\ \rm \implies \dfrac{\eta_A}{\eta_B} = \dfrac{ \dfrac{1}{327}}{ \dfrac{1}{227}} \\ \\ \rm \implies \dfrac{\eta_A}{\eta_B} = \dfrac{ 227}{ 327} \\ \\ \rm \implies \eta_A : \eta_B = 227 : 327\end{gathered}

\therefore\tiny\boxed{\mathfrak{Ratio \ of \ efficiency \ of \ A \ to \ that \ of \ B \ (\eta_A : \eta_B) = 227 : 327}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions