Math, asked by Anonymous, 10 months ago

solve it
3x/2 - 5y/3 = -2
x/3 + y/2 = 13/6
Find the value of x and y​

Answers

Answered by Anonymous
44

\Large\bf\blue{\underline{\underline{\bf{\red{Given}}}}}

\sf \Large\frac{3x}{2}-\frac{5y}{3}=-2

\sf \Large\frac{x}{3}+\frac{y}{2}=\Large\frac{13}{6}

\Large\bf\blue{\underline{\underline{\bf{\red{To\:find}}}}}

Find the value of x and y

\Large\bf\blue{\underline{\underline{\bf{\red{Solution}}}}}

\large{\boxed{\bf{\green{Method\::\:1}}}}

Solve by substitution method

  • \sf \large\frac{3x}{2}-\frac{5y}{3}=-2

\implies\sf \frac{9x-10y}{6}=-2

\implies\sf 9x-10y=-12 ----(i)

  • \sf \large\frac{x}{3}+\frac{y}{2}=\large\frac{13}{6}

\implies\sf \large\frac{2x+3y}{6}=\large\frac{13}{6}

\implies\sf 2x+3y=13 ----(ii)

From (ii) equation

\implies\sf 2x+3y-13=0

\implies\sf 3y=13-2x

\therefore\sf y=\large\frac{13-2x}{3}

Substituting the value of \sf y=\large\frac{13-2x}{3} in equation (i)

\implies\sf 9x-10y+12=0

\implies\sf 9x-\large\frac{10(13-2x)}{3}+12=0

\implies\sf 9x-\large\frac{130+20x}{3}+12=0

Write in this way also

\implies\sf 9x-\large\frac{130}{3}+\large\frac{20x}{3}+12=0

\implies\sf 9x-\large\frac{20x}{3}-\large\frac{130}{3}+12=0

\implies\sf \large\frac{27x+20x}{3}+\large\frac{36-130}{3}=0

\implies\sf 47x=94

\therefore\sf x=\Large\cancel\frac{94}{47}=2

Again substituting the value of x =2 in equation (i)

\implies\sf 9x-10y=-12

\implies\sf 9\times{2}-10y=-12

\implies\sf 18-10y=-12

\implies\sf -10y=-12-18

\implies\sf -10y=-30

\therefore\sf y=\Large\cancel\frac{30}{10}=3

______________________________________

\large{\boxed{\bf{\green{Method\::\:2}}}}

Solve by elimination method

\sf 9x-10y=-12 ----(i)

\sf 2x+3y=13 ----(ii)

Multiply (i) by 3 & multiply (ii) by 10

\implies\sf 27x-30y=-36 ---(iii)

\implies\sf 20x+30y=130 ----(iv)

Adding (iii) and (iv)

\implies\sf (27x-30y)+(20x+30y)=-36+130

\implies\sf 27x-30y+20x+30y=94

\implies\sf 47x=94

\therefore\sf x=\Large\cancel\frac{94}{47}=2

By substitution method

Substitute the value of x = 2 in equation (iii)

\implies\sf 27x-30y=-36

\implies\sf 27\times{2}-30y=-36

\implies\sf 54-30y=-36

\implies\sf -30y=-36-54

\implies\sf -30y=-90

\therefore\sf y=\Large\cancel\frac{90}{30}=3

Required value

\large{\boxed{\bf{x=2}}}

\large{\boxed{\bf{y=3}}}

\Large\bf\blue{\underline{\underline{\bf{\red{Verification}}}}}

Substituting x=2 and y = 3 in the both equations

\sf \Large\frac{3x}{2}-\frac{5y}{3}+2=0

LHS

\sf \Large\frac{3x}{2}-\frac{5y}{3}+2

\sf =\Large\frac{3×2}{2}-\Large\frac{5×3}{3}+2

\sf =3-5+2=0=RHS verified

\sf \Large\frac{x}{3}+\frac{y}{2}-\Large\frac{13}{6}=0

LHS

\sf \Large\frac{x}{3}+\frac{y}{2}-\Large\frac{13}{6}

\sf =\Large\frac{2}{3}+\Large\frac{3}{2}-\Large\frac{13}{6}

\sf =\Large\frac{4+9-13}{6}

\sf =\Large\frac{13-13}{6} = RHS verified

Both equations are satisfied

\Large\bf\blue{\underline{\underline{\bf{\red{Note}}}}}

Substitution method

In this method substitute the value of one variable by expressing it in the terms of the other one variable

Elimination method

In this method, removing one variable to get a linear equation in one variable

Similar questions