Math, asked by guru8, 1 year ago

solve it.................

Attachments:

Answers

Answered by shivuG07
0
(na+mb) : (ma+nb) may b the answer
Answered by siddhartharao77
0

150.

Given Equation is (a/x) + (b/y) = m   ----- (1)

Given Equation is (b/x) + (a/y) = n    ------ (2)

On solving (1) * a & (2) * b, we get

= > (a^2/x) + (ab/y) = ma

= > (b^2/x) + (ab/y) = nb

    -------------------------------

     (a^2 - b^2)/x = ma - nb

     x = (a^2 - b^2)/ma - nb.

-----------------------------------------------------------------------------------------------------

On solving (1) * b & (2) * a, we get

= > (ab/x) + (b^2/y) = mb

= > (ab/x) + (a^2y/y) = na

    -------------------------------

                  (b^2 - a^2)/y = mb - na

                   y = (b^2 - a^2)/mb - na

-------------------------------------------------------------------------------------------------------

Now, (x/y) :

=> \frac{a^2 - b^2}{ma - nb} * \frac{mb - na}{b^2 - a^2}

=> \frac{a^2 - b^2}{ma - nb} * \frac{na - mb}{a^2 - b^2}

=> \frac{na - mb}{ma - nb}

=> \boxed{na - mb : ma - nb}}



Hope this helps!

Similar questions