Math, asked by utkarsh8687, 10 months ago

solve it (Ans-1/8)..,.....

Attachments:

Answers

Answered by Anonymous
16

\huge\mathbb{\red{GIVEN:}}

\displaystyle\lim_{x\to1} \frac{4-\sqrt{15+x}}{1-x}

\huge\mathbb{\red {TO\:\:FIND:}}

★The value of the given limit.

\huge\mathbb{\red {CONCEPT\:\:USED:}}

★We will use 'Method of Rationalisation ' for simplifying the limit.

\huge\mathbb{\red {ANSWER:}}

We have,

=\displaystyle\lim_{x\to1} \frac{4-\sqrt{15+x}}{1-x}

=\displaystyle\lim_{x\to1}\frac{(4-\sqrt{15+x}) (4+\sqrt{15+x})}{(1-x) (4+\sqrt{15+x})}

=\displaystyle\lim_{x\to1}\frac{ (4) ^{2}-(\sqrt{15+x}) ^{2}}{(1-x) (4+\sqrt{15+x}) }

\large\purple{\boxed{\orange{(a+b) (a-b) =a^2-b^2}}}

=\displaystyle\lim_{x\to1}\frac{16-15-x}{(1-x) (4+\sqrt{15+x}) }

=\displaystyle\lim_{x\to1}\frac{(1-x)}{(1-x) (4+\sqrt{15+x}) }

=\displaystyle\lim_{x\to1}\frac{\cancel{(1-x)}}{\cancel{(1-x)} (4+\sqrt{15+x}) }

=\displaystyle\lim_{x\to1}\frac{1}{4+\sqrt{15+x}}

Now putting x = 1 , we have

=\dfrac{1}{4+\sqrt{15+1}}

=\dfrac{1}{4+\sqrt{16}}

=\dfrac{1}{4+4}

=\frac{1}{8}

The function approaches the value \frac{1}{8}.

<marquee scrollamount="1300">♥Answer by Rishabh♥</marquee>

Attachments:
Similar questions