Math, asked by Rajshuklakld, 8 months ago

solve it anyone........​

Attachments:

Answers

Answered by shadowsabers03
15

Here \sf{a,\ b,\ c\neq0.}

Consider,

\longrightarrow\sf{\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=3}

\longrightarrow\sf{\dfrac{a^4bc+b^4ca+c^4ab}{a^2b^2c^2}=3}

\longrightarrow\sf{\dfrac{abc(a^3+b^3+c^3)}{(abc)^2}=3}

\longrightarrow\sf{\dfrac{a^3+b^3+c^3}{abc}=3}

\longrightarrow\sf{a^3+b^3+c^3-3abc=0}

But,

  • \sf{a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)}

Then,

\longrightarrow\sf{(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0}

If we take \sf{a+b+c=0,} we see,

\longrightarrow\sf{E_1(1)=a(1)^2+b(1)+c=a+b+c=0}

\longrightarrow\sf{E_2(1)=b(1)^2+c(1)+a=b+c+a=0}

\longrightarrow\sf{E_3(1)=c(1)^2+b(1)+a=c+b+a=0}

Hence we get that 1 is the common zero of the quadratic equations \sf{E_1,\ E_2} and \sf{E_3.}

If we have to find a quadratic polynomial having zeroes common to \sf{E_2} and \sf{E_3} but different from \sf{E_1,} the other zeroes of

\longrightarrow\sf{E_2=E_3}

\longrightarrow\sf{bx^2+cx+a=cx^2+bx+a}

\longrightarrow\sf{bx^2+cx=cx^2+bx}

\longrightarrow\sf{bx^2-cx^2=bx-cx}

\longrightarrow\sf{x^2(b-c)=x(b-c)}

\longrightarrow\sf{x^2(b-c)-x(b-c)=0}

\longrightarrow\sf{x(x-1)(b-c)=0}

Since we're looking for a general condition with coefficients, we take,

\longrightarrow\sf{b=c}

Then,

\longrightarrow\sf{E_2=bx^2+bx+a}

We know 1 is one zero of \sf{E_2.} So the sum of its zeroes is given by,

\longrightarrow\sf{1+x'=-\dfrac{b}{b}}

\longrightarrow\sf{1+x'=-1}

\longrightarrow\sf{x'=-2}

Hence the other zero of \sf{E_2} and \sf{E_3} each is -2.

Product of zeroes of \sf{E_2} is given by,

\longrightarrow\sf{\dfrac{a}{b}=-2}

\longrightarrow\sf{a=-2b}

Taking \sf{x=-2} since it's common root,

\longrightarrow\sf{a=xb}

\longrightarrow\sf{a-xb=0}

Squaring both sides,

\longrightarrow\sf{(a-xb)^2=0^2}

\longrightarrow\sf{a^2-2abx+b^2x^2=0}

Since \sf{b=c\implies b^2=bc,}

\longrightarrow\sf{a^2-2abx+bcx^2=0}

Dividing by \sf{bc} since it's non-zero,

\longrightarrow\sf{x^2-\dfrac{2abx}{bc}+\dfrac{a^2}{bc}=0}

Taking \sf{2b=b+c\ \Longleftarrow\ b=c,}

\longrightarrow\underline{\underline{\sf{x^2-\dfrac{a(b+c)x}{bc}+\dfrac{a^2}{bc}=0}}}

Hence (d) is the answer.

Similar questions