Math, asked by Alwayshelpme, 9 months ago

Solve it ASAP. Question number 3​

Attachments:

Answers

Answered by BrainlyTornado
10

QUESTION:

 \tt If \ x= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \ and \  y = \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\ then

 \tt x + y + xy=

ANSWER:

  • The value of x + y + xy = 9

GIVEN:

 \tt x= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \ and \  y = \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}

TO FIND:

  • The value of x + y + xy

EXPLANATION:

 \tt x= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}

\tt Multiply\ and\ divide\ by \ \sqrt{5}+\sqrt{3}

 \tt x= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}

 \tt x= \dfrac{(\sqrt{5}+\sqrt{3} {)}^{2} }{(\sqrt{5} {)}^{2} -(\sqrt{3} {)}^{2} }

 \boxed{ \bold{ \large{ \gray{(A + B)^2 = A^2 + 2AB + B^2}}}}

 \tt x= \dfrac{5 + 3 + 2 \sqrt{3}  \sqrt{5}  }{5 - 3 }

 \tt x= \dfrac{8 + 2 \sqrt{15}}{2}

 \tt x= 4 + \sqrt{15}

 \tt y = \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}

\tt Multiply\ and\ divide\ by \ \sqrt{5} - \sqrt{3}

 \tt y = \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}  \times  \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}}

 \tt y = \dfrac{(\sqrt{5} - \sqrt{3} {)}^{2} }{(\sqrt{5} {)}^{2}   - ( \sqrt{3} {)}^{2} }

 \boxed{ \bold{ \large{ \gray{(A  - B)^2 = A^2  -  2AB + B^2}}}}

 \tt y= \dfrac{5 +  3  - 2 \sqrt{3}  \sqrt{5}  }{5 - 3 }

 \tt y= \dfrac{8  - 2 \sqrt{15}  }{2 }

 \tt y= 4  -  \sqrt{15}

 \tt xy= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times  \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}

 \tt xy= \dfrac{(\sqrt{5} {)}^{2}  - (\sqrt{3} {)}^{2} }{(\sqrt{5} {)}^{2} -(\sqrt{3} {)}^{2} }

 \tt xy= \dfrac{5 - 3}{5 - 3}

 \tt xy= \dfrac{2}{2}

 \tt xy= 1

 \tt x + y + xy= 4 + \sqrt{15} + 4  -  \sqrt{15} + 1

 \tt x + y + xy= 4 + 4+ 1

 \tt x + y + xy=9

Hence the value of x + y + xy = 9.

Similar questions