Math, asked by sanup3605, 1 year ago

solve it bro plsee solve​

Attachments:

Answers

Answered by Anonymous
3

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

 \implies \frac{d}{dx} ( \sqrt{x}  +  \frac{1}{ \sqrt{x} } ) {}^{2}  \\  \implies \frac{d}{dx} (( \sqrt{x})  {}^{2}  + (  \frac{1}{ \sqrt{x} }  )  {}^{} {}^{2}  + 2 \times  \sqrt{x}  \times  \frac{1}{ \sqrt{x} }  \\  \implies \frac{d}{dx} (x +  \frac{1}{x}  + 2) \\  \implies \frac{d}{dx}(x) +  \frac{d}{dx} ( \frac{1}{x} ) +  \frac{d}{dx} (2) \\  \implies1 + ( -1 )(x {}^{ - 2} ) + 0 \\   \implies \boxed{1 -  \frac{1}{x {}^{2} } }

Ans:-So option (b)(1-1/)

______________________________________________

Related Formulas

______________________________________________

 \rightarrow \frac{d}{dx} (x {}^{n} ) = n \times x {}^{n - 1}  \\  \rightarrow \frac{d}{dx} (c) = 0 \:  \:  \: ( \because \: c = constant) \\  \rightarrow \frac{d }{dx} (u&amp;#8723;v&amp;#8723;</p><p>w&amp;#8723;......) =  \frac{du}{dx} &amp;#8723; \frac{dv}{dx} &amp;#8723; \frac{dw}{dx} &amp;#8723;........</p><p> \\ where \: u \: and \: v \: and \: w \: and \: .....are \:  \\ function \: of \: x</p><p></p><p></p><p></p><p>

______________________________________________

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \&amp;#35;\mathcal{answer with quality  }\:  \:  \&amp;#38;  \:  \: \&amp;#35;BAL }

Answered by as514831
0

Step-by-step explanation:

d/dx(√x+1/√x)²

d/dx(x+1/x+ 2√x1/√x)

d/dx(x+1/x+2)

d/dx(x²+1+2x)/x

d/dx×x²+1+2x/x

=dx²+dx+2dx/dx²

3dx

Similar questions