Math, asked by vibhanshu8441, 8 months ago

solve it by cross multiplication ​

Attachments:

Answers

Answered by saikethan24
0

Step-by-step explanation:

given: x/a=y/b

by cross multiplying...

bx=ay

so, x= ay/b, y= bx/a

hope it helps you!

Answered by Anonymous
5

Question:

\sf{Solve \ for \ x \ and \ y : \ \dfrac{x}{a}=\dfrac{y}{b}}

\sf{ax+by=a^{2}+b^{2}}

________________________________

Answer:

\sf{The \ values \ of \ x \ and \ y \ are}

\sf{a \ and \ b \ respectively.}

Given:

\sf{The \ given \ equations \ are}

\sf{\dfrac{x}{a}=\dfrac{y}{b} \ and}

\sf{ax+by=a^{2}+b^{2}}

To find:

\sf{The \ value \ of \ x \ and \ y.}

Solution:

\sf{\dfrac{x}{a}=\dfrac{y}{b}...(1)}

\sf{ax+by=a^{2}+b^{2}...(2)}

\sf{From \ equation (1), \ we \ get}

\sf{\dfrac{x}{a}=\dfrac{y}{b}}

\sf{\leadsto{\dfrac{x}{y}=\dfrac{a}{b}}}

\sf{\leadsto{x=\dfrac{ay}{b}}}

\sf{Substitute \ x=\dfrac{ay}{b} \ in \ equation (2), \ we \ get}

\sf{a(\dfrac{ay}{b})+by=a^{2}+b^{2}}

\sf{\therefore{\dfrac{a^{2}y}{b}+by=a^{2}+b^{2}}}

\sf{\therefore{\dfrac{a^{2}y+b^{2}y}{b}=a^{2}+b^{2}}}

\sf{\therefore{\dfrac{y(a^{2}+b^{2})}{b}=a^{2}+b^{2}}}

\sf{\therefore{\dfrac{y}{b}=1}}

\boxed{\sf{\therefore{y=b}}}

\sf{Substitute \ y=b \ in \ equation (1), \ we \ get}

\sf{\therefore{\dfrac{x}{a}=\dfrac{b}{b}}}

\sf{\therefore{\dfrac{x}{a}=1}}

\boxed{\sf{\therefore{x=a}}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are}}}

\sf\purple{\tt{a \ and \ b \ respectively.}}

_____________________________

By Cross Multiplication:

\sf{The \ given \ equations \ are}

\sf{\dfrac{x}{a}=\dfrac{y}{b}}

\sf{\therefore{bx=ay}}

\sf{\therefore{bx-ay+0=0...(1)}}

\sf{ax+by=a^{2}+b^{2}}

\sf{\therefore{ax+by-a^{2}-b^{2}=0...(2)}}

\sf{Here,}

\sf{a_{1}=b, \ a_{2}=a, \ b_{1}=-a, \ b_{2}=b,}

\sf{c_{1}=0, \ c_{2}=-a^{2}-b^{2}}

\sf{By \ formula}

\boxed{\sf{x=\dfrac{b_{1}c_{2}-b_{2}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}, \ y=\dfrac{c_{1}a_{2}-c_{2}a_{1}}{a_{1}b_{2}-a_{2}b_{1}}}}

\sf{\leadsto{x=\dfrac{(-a)(-a^{2}-b^{2})-0}{b^{2}-(a)(-a)}}}

\sf{\therefore{x=\dfrac{a^{3}+ab^{2}}{a^{2}+b^{2}}}}

\sf{\therefore{x=\dfrac{a(a^{2}+b^{2})}{a^{2}+b^{2}}}}

\boxed{\sf{\therefore{x=a}}}

\sf{\leadsto{y=\dfrac{0-(-a^{2}-b^{2})(b)}{b^{2}+a^{2}}}}

\sf{\therefore{y=\dfrac{a^{2}+b^{2}(b)}{a^{2}+b^{2}}}}

\boxed{\sf{\therefore{y=b}}}

\sf\purple{\tt{\therefore{The \ value \ of \ x \ is \ a}}}

\sf\purple{\tt{and \ y \ is \ b.}}


hukam0685: it should be solved by cross multiplication method as stated in the question
Similar questions