Math, asked by priyanshu3847, 17 days ago

SOLVE IT BY ELEMINATION OR SUBSTITUTION PROCESS​

Attachments:

Answers

Answered by BrainlyTwinklingstar
4

Answer

We'll solve this by substitution method.

\sf \dashrightarrow \dfrac{10}{x + y} + \dfrac{2}{x - y} = 4 \: \: --- (i)

\sf \dashrightarrow \dfrac{15}{x + y} - \dfrac{9}{x - y} = -2

Let \sf \dfrac{1}{x + y} be u.

Let \sf \dfrac{1}{x - y} be v.

So, the equations become

\sf \dashrightarrow 10u + 2v = 4 \: \: --- (iii)

\sf \dashrightarrow 15u - 9v = -2 \: \: --- (iv)

By third equation,

\sf \dashrightarrow 10u + 2v = 4

\sf \dashrightarrow 10u = 4 - 2v

\sf \dashrightarrow u = \dfrac{4 - 2v}{10}

Now, let's find the value of v by fourth equation.

\sf \dashrightarrow 15u - 9v = -2

\sf \dashrightarrow 15 \bigg( \dfrac{4 - 2v}{10} \bigg) - 9v = -2

\sf \dashrightarrow \dfrac{60 - 30v}{10} - 9v = -2

\sf \dashrightarrow \dfrac{60 - 30v - 90v}{10} = -2

\sf \dashrightarrow \dfrac{60 - 120v}{10} = -2

\sf \dashrightarrow 60 - 120v = -2 \times 10

\sf \dashrightarrow 60 - 120v = -20

\sf \dashrightarrow -120v = -20 - 60

\sf \dashrightarrow -120v = -80

\sf \dashrightarrow v = \dfrac{-80}{-120}

\sf \dashrightarrow v = \dfrac{2}{3}

Now, let's find the value of u by third equation.

\sf \dashrightarrow 10u + 2v = 4

\sf \dashrightarrow 10u + 2 \bigg( \dfrac{2}{3} \bigg) = 4

\sf \dashrightarrow 10u + \dfrac{4}{3} = 4

\sf \dashrightarrow \dfrac{30u + 4}{3} = 4

\sf \dashrightarrow 30u + 4 = 4 \times 3

\sf \dashrightarrow 30u + 4 = 12

\sf \dashrightarrow 30u = 12 - 4

\sf \dashrightarrow 30u = 8

\sf \dashrightarrow u = \dfrac{8}{30}

\sf \dashrightarrow u = \dfrac{4}{15}

We know that,

\sf \dashrightarrow \dfrac{1}{x + y} = u

\sf \dashrightarrow \dfrac{1}{x + y} = \dfrac{4}{15}

\sf \dashrightarrow 4x + 4y = 15 \: \: --- (v)

We also know that,

\sf \dashrightarrow \dfrac{1}{x - y} = v

\sf \dashrightarrow \dfrac{1}{x - y} = \dfrac{2}{3}

\sf \dashrightarrow 2x - 2y = 3 \: \: --- (vi)

Now, by fifth equation.

\sf \dashrightarrow 4x + 4y = 15

\sf \dashrightarrow 4x = 15 - 4y

\sf \dashrightarrow x = \dfrac{15 - 4y}{4}

Now, we should find the value of y by sixth equation.

\sf \dashrightarrow 2x - 2y = 3

\sf \dashrightarrow 2 \bigg( \dfrac{15 - 4y}{4} \bigg) - 2y = 3

\sf \dashrightarrow \dfrac{30 - 8y}{4} - 2y = 3

\sf \dashrightarrow \dfrac{30 - 8y - 8y}{4} = 3

\sf \dashrightarrow \dfrac{30 - 16y}{4} = 3

\sf \dashrightarrow 30 - 16y = 3 \times 4

\sf \dashrightarrow 30 - 16y = 12

\sf \dashrightarrow -16y = 12 - 30

\sf \dashrightarrow -16y = -18

\sf \dashrightarrow y = \dfrac{-18}{-16}

\sf \dashrightarrow y = \dfrac{9}{8}

Now, we can find the value of x by fifth equation.

\sf \dashrightarrow 4x + 4y = 15

\sf \dashrightarrow 4x + 4 \bigg( \dfrac{9}{8} \bigg) = 15

\sf \dashrightarrow 4x + \dfrac{36}{8} = 15

\sf \dashrightarrow \dfrac{32x + 36}{8} = 15

\sf \dashrightarrow 32x + 36 = 15 \times 8

\sf \dashrightarrow 32x + 16 = 120

\sf \dashrightarrow 32x = 120 - 16

\sf \dashrightarrow 32x = 104

\sf \dashrightarrow x = \dfrac{104}{32}

\sf \dashrightarrow x = \dfrac{13}{4}

Hence, the values of x and y are \sf \dfrac{13}{4} and \sf \dfrac{9}{8} respectively.


amansharma264: Excellent
Similar questions