Math, asked by anmol962810, 1 year ago

solve it by starting from LHS...


Mathematics. ....

Attachments:

anmol962810: What happen...
anmol962810: Give me the solution

Answers

Answered by siddhartharao77
2

LHS:

Given : \frac{1 - cosA}{1 + cosA}

On rationalizing, we get

=> \frac{1 - cosA}{1 + cosA} * \frac{1 - cosA}{1 - cosA}

=> \frac{(1 - cosA)^2}{1 - cos^2A}

=> \frac{(1 - cosA)^2}{sin^2A}

=> (\frac{1}{sinA} - \frac{cosA}{sinA})^2

=> \boxed{(cosecA - cotA)^2}

= RHS

-------------------------------------------------------------------------------------------------------

RHS:

=> (cosecA - cotA)^2

=> (cosecA - cotA)(cosecA - cotA)

= > cosec^2A - 2cotAcosecA + cot^2A

=> \frac{1}{sin^2A} - \frac{2 * cosA * 1}{sinA * sinA} + cot^2A

=> \frac{1}{sin^2A} - \frac{2cosA}{sin^2A} + cot^2A

=> \frac{1}{sin^2A} - \frac{2cosA}{sin^2A} + \frac{cos^2A}{sin^2A}

=>\frac{1 - 2cosA + cos^2A}{sin^2A}

=> \frac{1 - 2cosA + cos^2A}{1 - cos^2A}

=> \frac{1 - 2cosA + cos^2A}{(1 - cosA)(1 + cosA)}

=> \frac{1 - cosA - cosA + cos^2A}{(1 - cosA)(1 + cosA)}

=> \frac{1(1 - cosA) - cosA(1 - cosA)}{(1 - cosA)(1 + cosA)}

=> \frac{(1 - cosA)(1 - cosA)}{(1 - cosA)(1 + cosA)}

=> \boxed{ \frac{1 - cosA}{1 + cosA}}

= LHS

Hope it helps!


siddhartharao77: but i have proved LHS = RHS!
anmol962810: No i mean that from RHS side u prove
anmol962810: RHS=LHS
FuturePoet: Yes we can prove !
siddhartharao77: ohhkk...5 minutes!
anmol962810: ok...
siddhartharao77: Done/
FuturePoet: :)
FuturePoet: Nice
siddhartharao77: tnx
Similar questions