Math, asked by punjabijatti02, 1 year ago

solve it by subsitution meathod​

Attachments:

Answers

Answered by Anonymous
7

Solution :-

\sf{7x + 2y = -1} ..(1)

\implies{\sf{7x = -1 - 2y}}

\implies{\sf{x = \dfrac{-1 - 2y}{7}}} ..(2)

\sf{3x - 4y = 9}

\sf{Substitute\ (2)\ in\ it\ :-}

\implies{\sf{3 ( \dfrac{-1 - 2y}{7}) - 4y = 9}}

\implies{\sf{ \dfrac{-3 - 6y}{7} - 4y = 9}}

\implies{\sf{\dfrac{-3 - 6y - 28y}{7} = 9}}

\implies{\sf{-3 - 34y = 9 \times 7}}

\implies{\sf{- 34y = 63 + 3}}

\implies{\sf{- 34y = 66}}

\boxed{\sf{y = \dfrac{-33}{17}}} ..(3)

\sf{Substitute\ (3)\ in\ (1)\ :-}

\implies{\sf{7x + 2y = -1}}

\implies{\sf{7x + 2 (\dfrac{-33}{17} ) = -1}}

\implies{\sf{7x - \dfrac{66}{17} = -1}}

\implies{\sf{7x = -1 + \dfrac{66}{17}}}

\implies{\sf{7x = \dfrac{-17 + 66}{17}}}

\implies{\sf{x = \dfrac{49}{17 \times 7}}}

\boxed{\sf{x = \dfrac{7}{17}}}

So, the value of x & y is :-

\boxed{\boxed{\sf{y = \dfrac{-33}{17}}}}

\boxed{\boxed{\sf{x = \dfrac{7}{17}}}}

Answered by Anonymous
6

Solution :-

As given

7x + 2y = -1 .....(i)

3x - 4y = 9 ........(ii)

Now we will multiply equation (i) from 2

→ (2)7x + (2)2y = (2)(-1)

→ 14x + 4y = -2 ....(iii)

Now we will add equation (ii) to equation (iii)

\begin{aligned} 14x + 4y & =  -2 \\ 3x - 4y & = 9 \\ \line(1,0){35} & \line(1,0){40} \\ 17x & = 7 \end{aligned}

So now we have got the Value of

 x = \dfrac{7}{17}

Now substiting it in equation (ii)

 \rightarrow 3\times \dfrac{7}{17} - 4y = 9 \\\\ \rightarrow \dfrac{21}{17} - 4y = 9 \\\\ \rightarrow 4y = \dfrac{21}{17} - 9 \\\\ \rightarrow 4y = \dfrac{21 - 153}{17}

 \rightarrow y = \dfrac{-132}{17\times 4} \\ \\ \rightarrow y = \dfrac{-37}{17}

So

 {\huge{\boxed{\sf{x = \dfrac{7}{17}}}}} \\\\ {\huge{\boxed{\sf{y = \dfrac{-37}{17}}}}}

Similar questions