Math, asked by kumarbrijesh7142, 6 months ago

solve it by subsitution method ..........​

Attachments:

Answers

Answered by TinaSibi
1

Answer:

x+y =13

Step-by-step explanation:

x/3 + y/2 = 13/6

x/3 + y = 13/6 ×2

x + y = 13/3 × 3

x + y = 13

Answered by MaIeficent
11

Step-by-step explanation:

Given equations:-

 \sf \dfrac{3x}{2}  -  \dfrac{5y}{3}  =  - 2.....(i)

 \sf \dfrac{x}{3}  +  \dfrac{y}{2}  =  \dfrac{13}{6} .......(ii)

In equation (i)

 \sf \dashrightarrow \dfrac{3x}{2}  -  \dfrac{5y}{3}  =  - 2

 \sf \dashrightarrow \dfrac{3(3x)  - 2(5y)}{6}    =  - 2

 \sf \dashrightarrow \dfrac{9x  - 10y}{6}    =  - 2

 \sf \dashrightarrow 9x  - 10y   =  - 2(6)

 \sf \dashrightarrow 9x  - 10y   =  - 12

 \sf \dashrightarrow 9x  =  - 12 + 10y

 \sf \dashrightarrow x  =    \dfrac{10y - 12}{9}......(iii)

 \sf Substituting \: x  =    \dfrac{10y - 12}{9} \: in \: equation \: (ii)

 \sf  \dashrightarrow\dfrac{x}{3}  +  \dfrac{y}{2}  =  \dfrac{13}{6}

 \sf  \dashrightarrow\dfrac{   \bigg(\:  \:  \: \dfrac{10y - 12}{9 } \bigg)   }{3}  +  \dfrac{y}{2}  =  \dfrac{13}{6}

 \sf  \dashrightarrow\dfrac{  10y - 12   }{27}  +  \dfrac{y}{2}  =  \dfrac{13}{6}

 \sf  \dashrightarrow\dfrac{  2(10y - 12) + 27y   }{54}   =  \dfrac{13}{6}

 \sf  \dashrightarrow\dfrac{  20y - 24 + 27y   }{54}   =  \dfrac{13}{6}

 \sf  \dashrightarrow 47y - 24      =  \dfrac{13}{6}  \times 56

 \sf  \dashrightarrow 47y - 24      =  117

 \sf  \dashrightarrow 47y     =  117  + 24 = 141

 \sf  \dashrightarrow y =  \dfrac{141}{47}  = 3

\sf Substituting \: y = 3\: in \: equation \:(iii)

 \sf \dashrightarrow x  =    \dfrac{10y - 12}{9}

 \sf \dashrightarrow x  =    \dfrac{10(3) - 12}{9}

 \sf \dashrightarrow x  =    \dfrac{18}{9} = 2

\dashrightarrow \underline{\boxed{\sf \therefore x = 2 \: , \: y = 3}}

Similar questions