Solve it by using cross multiplication method
x + y = 14
x - y = 4
No Spam
Answers
Answer:
Answer:
LET:−
\mathtt{a1 = 1 \: \: \: \: \: \: \: \: \: \: b1 = 1 \: \: \: \: \: \: \: \: \: c1 = - 14}a1=1b1=1c1=−14
\mathtt{a2 = - 1 \: \: \: \: \: \: \: b2 = - 1 \: \: \: \: \: c2 = - 4}a2=−1b2=−1c2=−4
\: \: \: \: \: \: \: \: \: \: \: \: \:
\mathtt{ \frac{x}{b1c2 - b2c1} = \frac{y}{c1a2 - c2a1} = \frac{1}{a1b2 - a2b1} }
b1c2−b2c1
x
=
c1a2−c2a1
y
=
a1b2−a2b1
1
\: \: \: \: \: \: \: \: \: \: \: \: \:
\mathtt\green{BY \: USING \: RULE \: (FORMULA)}BYUSINGRULE(FORMULA)
\mathtt{ \frac{x}{( - 1)( - 4) - ( - 1)( - 14)} = \frac{y}{( - 14)(1) - ( - 4)(1)} = \frac{1}{(1)( - 1) - (1)(1)} }
(−1)(−4)−(−1)(−14)
x
=
(−14)(1)−(−4)(1)
y
=
(1)(−1)−(1)(1)
1
\mathtt{ \frac{x}{ - 4 - 14} = \frac{y}{( - 14) + 4} = \frac{1}{ - 1 - 1} }
−4−14
x
=
(−14)+4
y
=
−1−1
1
\mathtt{ \frac{x}{ - 18} = \frac{y}{ - 10} = \frac{1}{ - 2} }
−18
x
=
−10
y
=
−2
1
\mathtt{x = \frac{ - 18}{ - 2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: y = \frac{ - 10}{ - 2} }x=
−2
−18
y=
−2
−10
\mathtt{x = 9 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: y = 5}x=9y=5
\fbox\green{x=9}
x=9
\fbox\green{y=5}
y=5