Economy, asked by imhappiness, 1 month ago

solve it:

Consumption : C = 40 + 0.75Y

Investment : I = 140 – 10i

Government Expenditure : G = 100

Tax : T = 80

Money Demand : Md = 0.2Y – 5i

Money Supply : Ms = 85

(i is % interest rate; other figures in Rs. Crores)

a) Find out the equilibrium income, Y and interest rate i.

b) Suppose the government increases its expenditure on education by Rs. 65 Crores?

What would be its effect on equilibrium income and rate of interest.

Answers

Answered by sonymemon46
0

Answer:

mujhe maths nai aata sorry

Answered by anjumanyasmin
1

Given:

\text { In order to obtain equilibrium income, we have to find out first the equations for } I S\text { and } L M \text { curves. }\\

Y=C+I+G

\text { where } C=40+0.75 Y_{d} \text { and } I=140-10 i \text { and } G=100

\begin{aligned}Y &=40+0.75 Y_{d}+140-10 i+100 \\&=40+0.75(Y-80)+140-10 i+100 \\&=40+0.75 Y-60+140-10 i+100 \\Y-0.75 Y &=220-10 i \\0.25 Y &=220-10 i\end{aligned}

\begin{array}{l}\frac{1}{4} Y=220-10 i \\Y=880-40 i\end{array}\\

\text { Thus } I S \text { equation: } Y=880-40 i

\text { To obtain } L M \text { function, we equate demand for money with supply of money. }

\begin{aligned}M^{t} &=M^{5} \\0.2 Y-5 i &=85 \\5 i &=0.2 Y-85 \\i &=\frac{0.2}{5} Y-17\end{aligned}

\text { Thus, } L M \text { function is }

i=0.04 Y-17

\text { Substituting the value of } i \text { in the } I S \text { function equation ( } i \text { ) we have }

\begin{array}{l}Y=880-40(0.04 Y-17) \\=880-1.6 Y+680 \\Y+1.6 Y=880+680 \\2.6 Y=1560 \\\quad Y=1560 \times \frac{10}{26}=600\end{array}

\text { Substituting the value of } 600 \text { for } Y \text { in } I S \text { equation (i) we have }

\begin{aligned}600 &=880-40 i \\40 i &=880-600=280 \\i &=\frac{280}{40}=7\end{aligned}

\text { (b) With the increase in Government expenditure by Rs. } 65 \text { crores }

\begin{aligned}Y^{\prime}=C+I+G+\Delta G \\Y^{\prime}=40+0.75\left(Y^{\prime}-80\right)+140-10 i+100+65 \\=& 40+0.75 Y^{\prime}-60+140-10 i+100+65 \\\quad Y^{\prime}-0.75 Y^{\prime}=285-10 i \\Y^{\prime}(1-0.75)=285-10 i \\\quad \frac{1}{4} Y^{\prime}=285-10 i \\Y^{\prime}=1140-40 i\end{aligned}

\text { New equation for } I S \text { curve is }=Y^{\prime}=1140-40 i

\text { Substituting the value of } i \text { from } L M \text { function equation (ii) we have }

\begin{aligned}Y^{\prime} &=1140-40\left(0.04 Y^{\prime}-17\right) \\Y^{\prime} &=1140-1.6 Y^{\prime}+680 \\Y^{\prime}+1.6 Y^{\prime} &=1820 \\Y^{\prime}(1+1.6) &=1820 \\2.6 Y^{\prime} &=1820\end{aligned}

Y^{\prime}=1820 \times \frac{10}{26}=700

\text { Now, substituting the value of } Y \text { in the } L M \text { equation (ii) we have }

\text { New interest } i=0.04(700)-17

\begin{array}{l}=28.00-17=11 \\=11\end{array}

\text { Thus, the new equilibrium income is } 700 \text { crores and interest rate is } 11 \text { per cent }

Similar questions