Math, asked by Anonymous, 5 months ago

solve it!
don't spam ​

Attachments:

Answers

Answered by hotcupid16
1

 \huge {\mathfrak{ \underline{  \red s \green o  \blue l \pink u \purple t \orange  i o \red n  }}} : -

 \dfrac{1}{ \tan(A) }  -  \dfrac{1}{ \tan(2A) }

 \large \underline {\bold {\boxed{ \tan(2A)  =  \dfrac{2 \tan(A) }{1 +  \tan {}^{2} (A) } }}}

  \longrightarrow \dfrac{1}{ \tan(A) }  -  \dfrac{1}{ \dfrac{2 \tan(A) }{1 +   \tan {}^{2} (A)  } }  \\  \\   \longrightarrow  \frac{1}{ \tan(A) }  -  \dfrac{1 +  \tan {}^{2} (A) }{2 \tan(A) } \\  \\  \longrightarrow \:  \frac{2 - 1 +  \tan {}^{2} (A) }{2 \tan(A) }  \\  \\  \longrightarrow \:  \frac{1 +  \tan {}^{2} (A) }{2 \tan(A) }

 \large {\underline {\bold {\boxed{ \sin(2A)  =  \frac{2 \tan(A) }{1 + \tan {}^{2} (A)  } }}}}

 \longrightarrow \:  \dfrac{1}{ \sin(2A) }

 \large {\underline {\bold {\boxed{ \cosec(A)  =  \dfrac{1}{ \sin(A) } }}}}

 \longrightarrow \:  \cosec(2A)

 \dag \:  \huge \bold{ \green{\boxed{  \rm{ \blue{ Hence \: proved}}}}}

●❯────────────────❮●

 \huge \underline \mathfrak{  \red s \blue o \green m \pink e \:  \:  \red f \green  o \blue r \pink m \purple u  \orange la \red e } : -

(1) \sf  \:   \: \sin {}^{2} \theta +  \cos {}^{2}  \theta  = 1 \\  \\ (2) \:  \cosec {}^{2}  \theta  -  \cot {}^{2} \theta = 1 \\  \\ (3) \:  \sec {}^{2} \theta  -  \tan {}^{2} \theta = 1 \\  \\ (4) \cos2 \theta = 2 \cos {}^{2} \theta - 1 \\  \\ (5) \sin 2\theta = 2 \sin\theta\cos\theta

●❯────────────────❮●

Answered by Anonymous
1

Step-by-step explanation:

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions