Math, asked by solvethis34, 3 months ago

solve it
don't spam
correct answer needed

Attachments:

Answers

Answered by Anonymous
2

Answer:

To prove:-

\bf (1+tan15°)(1+tan30°)=2

Proof:-

We know that

\boxed{\bf 15°+30°=45°}\\ \\

\sf{:}\implies tan (15°+30°)=tan45°\\ \\

\sf{:}\implies \dfrac {tan15°+tan30°}{1-tan15°.tan30°}=1 \\ \\

\sf{:}\implies tan15°+tan30°=1-tan15°.tan30°\\ \\

\sf{:}\implies tan15°+tan30°+tan15°.tan30°=1 \\ \\

\sf{:}\implies 1+tan15°+tan30°+tan15°.tan30°=1+1 \\ \\

\sf{:}\implies 1+tan15°+tan30°+tan15°.tan30°=2 \\ \\

\sf{:}\implies 1 (1+tan15°)+tan30°(1+tan15°)=2 \\ \\

\sf{:}\implies (1+tan15°)(1+tan30°)=2\\ \\

\therefore{\huge{ \bf{(Proved)}}}

Answered by BadCaption01
1

{ \bold { \underline{\large\pink{Correct \: Question :) }}}} \:

★ Verify the rolle's theorem for the function.

 \\  \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \: on \:  \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \\  \\

TO PROVE :-

verify rolle's theorem for the given function.

\Large{\underline{\underline{\textsf{\maltese\: {\red{Required Answer :) }}}}}}

∵ As we know that the exponential, cosine, sine functions are always continuous and differential in every situation. so we can say that,

\\ : \implies  \displaystyle \sf \: f(x)  \: continuous \: on \: x \in \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg   \lgroup Equation \ 1\bigg \rgroup \\  \\  \\

: \implies  \displaystyle \sf \: f(x)  \: differential \: on \: x \in \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg   \lgroup Equation \ 2\bigg \rgroup \\  \\

For x = π/4,

 \\ :  \implies \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \\  \\

 \\ : \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{x}  \bigg( \sin ^{ \dfrac{ \pi}{4} }  -  \cos ^{  \dfrac{ \pi}{4} }  \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg( \dfrac{ \sqrt{2} }{2}  -   \dfrac{\sqrt{2} }{2}   \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg( \dfrac{ \sqrt{2} -  \sqrt{2}  }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg( \dfrac{ 0 }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = e ^{ \dfrac{ \pi}{4} }  \bigg(0 \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )   = 0 \\  \\

For x = 5π/4,

 \\ :  \implies \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \\  \\

 \\ : \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )  = e ^{x}  \bigg( \sin ^{ \dfrac{5 \pi}{4} }  -  \cos ^{  \dfrac{5 \pi}{4} }  \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{5 \pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg( \dfrac{5 \sqrt{2} }{2}  -   \dfrac{5\sqrt{2} }{2}   \bigg) \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg( \dfrac{5 \sqrt{2} -  5\sqrt{2}  }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{5 \pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg( \dfrac{ 0 }{2}   \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )  = e ^{ \dfrac{ 5\pi}{4} }  \bigg(0 \bigg)  \\  \\  \\

: \implies  \displaystyle \sf \: f \bigg( \dfrac{ 5\pi}{4} \bigg )   = 0 \\  \\

Now we can say that ,

 \\ : \implies  \displaystyle \sf \: f \bigg( \dfrac{ \pi}{4} \bigg )  = f \bigg( \dfrac{5 \pi}{4} \bigg )   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup Equation \ 3\bigg \rgroup\\  \\

So now we can say that all the the three equations satisfy for the rolle's theorem.

 \\ :  \implies \displaystyle \sf \: f(x) = e ^{x} \bigg( \sin x -  \cos x \bigg) \\

Now differentiate with respect to x in the given function.

:  \implies \displaystyle \sf \: f' (x) = e ^{x} \bigg( \sin x  +   \cos x \bigg)  + e ^{x} \bigg( \sin x -  \cos x \bigg)  \\  \\  \\

:  \implies \displaystyle \sf \: f' (x) = e ^{x} \bigg( \sin x  +   \cos x  +  \sin x -  \cos x\bigg )  \\  \\  \\

:  \implies \displaystyle \sf \: f' (x) = e ^{x}  \bigg(2 \sin x \bigg) \\

Now,

 \\ :  \implies \displaystyle \sf \: f' (x) = 0 \\  \\  \\

:  \implies \displaystyle \sf \:e ^{x}  \bigg(2 \sin x \bigg)  = 0 \\  \\  \\

:  \implies \displaystyle \sf \: \bigg(2 \sin x \bigg)  =  \frac{0}{e ^{x} }  \\  \\  \\

:  \implies \displaystyle \sf \: \bigg(2 \sin x \bigg)   = 0 \\  \\  \\

:  \implies \displaystyle \sf \: \sin x = 0 \\  \\  \\

:  \implies \displaystyle \sf \:x =  \pi   \: \: on \: x \in \bigg[{\dfrac{\pi}{4} \:  \dfrac{5\pi}{4}} \bigg] \\  \\

\Large{\underline{\underline{\textsf{\maltese\: {\orange{Hence~verified}}}}}}

Similar questions