Math, asked by Anonymous, 4 months ago

solve it ;]
dont spam

Attachments:

Answers

Answered by hotcupid16
34

\Large\bf{\color{indigo}GiVeN,} \\

The length of diagonals of a rhombus are in ratio 3 : 4.

It's perimeter is 80 cm.

\bf\pink{Let,} \\

The length of one diagonal is 3X.

=》 d₁ = 3X

And length of other diagonal is 4X.

=》 d₂ = 4X

\bf\blue{We\:have,} \\

\red\bigstar\:\:\bf{\color{peru}Perimeter\:=\:4\times{Side}\:} \\

:\implies\:\:\bf{80\:=\:4\times{Side}\:} \\

:\implies\:\:\bf{Side\:=\:\dfrac{80}{4}\:} \\

:\implies\:\:\bf\green{Side\:=\:20\:cm\:} \\

\bf\purple{We\:know\:that,} \\

❶ In rhombus all sides are equal and two diagonals are intersect at the mid point of each other.

❷ At the intersection point two diagonals makes 90° angle between them.

\bf\red{So,} \\

\pink\bigstar\:\:\bf{\color{coral}(Side)^2\:=\:\Big(\dfrac{d_1}{2}\Big)^2\:+\:\Big(\dfrac{d_2}{2}\Big)^2\:} \\

:\implies\:\:\bf{(20)^2\:=\:\Big(\dfrac{3X}{2}\Big)^2\:+\:\Big(\dfrac{4X}{2}\Big)^2\:} \\

:\implies\:\:\bf{400\:=\:\dfrac{9X^2}{4}\:+\:\dfrac{16X^2}{4}\:} \\

:\implies\:\:\bf{400\:=\:\dfrac{9X^2\:+\:16X^2}{4}\:} \\

:\implies\:\:\bf{400\times{4}\:=\:25X^2\:} \\

:\implies\:\:\bf{1600\:=\:25X^2\:} \\

:\implies\:\:\bf{X^2\:=\:\dfrac{1600}{25}} \\

:\implies\:\:\bf{X\:=\:\sqrt{\dfrac{1600}{25}}\:} \\

:\implies\:\:\bf{X\:=\:\dfrac{40}{5}\:} \\

:\implies\:\:\bf{\color{peru}X\:=\:8\:cm\:} \\

________________

\bf\orange{Hence,} \\

=》 d₁ = 3 × 8 = 24 cm

=》 d₂ = 4 × 8 = 32 cm

\Large\bold\therefore The length of the diagonals are 24 cm & 32 cm.

Answered by Anonymous
1

Step-by-step explanation:

Step-by-step explanation:

Given Equation:-

⠀⠀⠀⠀ \sf{\bigg[ \dfrac{5 {x}^{2} - 10}{12 } \bigg] }

To find:-

value of x

Solution:-

use factor theorem

take the value of equation =0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow \left [\dfrac {5x^2-10}{12}\right]=0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow \dfrac {5x^2-10}{12}=0

using cross multiplication

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 5x^2-10=0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 5x^2=10

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x^2=\dfrac {10}{5}

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x^2=2

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x=\sqrt {2}

\\\\\therefore\sf x=\sqrt {2}.

Similar questions