Math, asked by Anonymous, 4 months ago

solve it dont spam plz

Attachments:

Answers

Answered by hotcupid16
34

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Attachments:
Answered by Anonymous
53

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions