Math, asked by Anonymous, 11 months ago

solve it ...............fast ...​

Attachments:

Answers

Answered by Anonymous
3

HOPE THIS HELPS YOU

PLZ FOLLOW ME

MARK ME AS BRAINLIEST.

✌️

Attachments:
Answered by ITzBrainlyGuy
1

USED FORMULAS:

→  { \sec}^{2}  \theta \:  -  { \tan}^{2}  \theta = 1 \\  \: \:  \:  \:  \:  \:  \:   { \sec}^{2}  \theta = 1 +   { \tan}^{2}  \theta \\ →  { \cosec}^{2}  \theta  -   { \tan}^{2}  \theta = 1 \\  \:  \:  \:  \:  \:  \:  \:  { \cosec}^{2}  \theta  = 1 +  { \tan}^{2}  \theta \\ → { \sec}^{2} \theta  =  \frac{1}{  { \cos}^{2} \theta }   \\ → { \cosec}^{2} \theta  =  \frac{1}{ { \sin}^{2} \theta }  \\ → \frac{ { \sin}^{2}  \theta}{ { \cos}^{2}  \theta}  =  { \tan}^{2}  \theta \\ → \cot \theta =  \frac{1}{ \tan \theta}

ANSWER:

Taking the first one

 \dfrac{ { \sec}^{2}  \theta}{  { \cosec}^{2} \theta }  =  \dfrac{ \frac{1}{ { \cos}^{2}  \theta } }{ \frac{1}{ { \sin}^{2} \theta } }

 \dfrac{ { \sec}^{2}  \theta}{  { \cosec}^{2} \theta }  =  \dfrac{ { \sin}^{2 } \theta }{ { \cos}^{2}  \theta}  =  { \tan}^{2}  \theta

Taking the second one

{( \frac{1 -  \tan \theta}{1 -  \cot \theta} )}^{2} = {( \frac{1 -  \tan \theta}{ \frac{ \tan \theta - 1}{ \tan \theta} } )}^{2}

simplifying the complex fraction

{ \frac{1 -  \tan \theta}{1 -  \cot \theta} }^{2}  =  {( -  \tan \theta)}^{2}

{( \frac{1 -  \tan \theta}{1 -   \cot\theta}) }^{2}  =  {\tan}^{2}  \theta

Hence proved

CONCEPTS USED:

trigonometric ratios

trigonometric identities

Similar questions