Math, asked by Anonymous, 1 year ago

Solve it fast


2 nd question​

Attachments:

Answers

Answered by rahman786khalilu
5

hope it helps

mark as brainliest

Attachments:
Answered by TRISHNADEVI
12

 \red{ \bold{ \huge{ \underline{ \overline{ \mid{ \purple{ \:  \: SOLUTION\:  \:  \red{ \mid}}}}}}}}

 \rm{L.H.S. =( x {}^{ \frac{1}{a - b} }) {}^{ \frac{1}{a - c} } \: . \:(x {}^{ \frac{1}{b - c} }) {}^{ \frac{1}{b - a} } \: .   \:(x {}^{ \frac{1}{c - a} }) {}^{ \frac{1}{c- b} } \:  } \\  \\  \rm{ =x {}^{ \frac{1}{(a - b)(a - c)} }  \: . \: x {}^{ \frac{1}{(b - c)(b - a)} }   \: . \: x {}^{ \frac{1}{(c - a)(c - b)} } } \\  \\  \rm{ = x {}^{ \frac{1}{(a - b)[ - (c - a)]} } \: . \:  x {}^{ \frac{1}{(b - c)[ - (a - b)]}}\: . \:x {}^{ \frac{1}{(c - a)[  -  (b - c)]} }  } \\  \\ \rm{  =x {}^{ \frac{1}{ [- (a - b)(c - a)] } \:   + \:  \frac{1}{[ - (b - c)(a - b)]}   \:  +  \:  \frac{1}{[ - (c - a)(b - c)]} }   } \\  \\  \rm{ =x {}^{  -  \: \frac{1}{(a - b)(c - a)}  \: -   \:  \frac{1}{(b - c)(a - b)} \:  -  \:  \frac{1}{(c - a)(b - c)} }  } \\  \\  \rm{ = x {}^{ - [\frac{1}{(a - b)(c - a)} +  \frac{1}{(b - c)(a - b)}  +  \frac{1}{(c - a)(b - c)} ] } } \\  \\  \rm{ = x {}^{ - [ \frac{(b - c) + (c - a) + (a - b)}{(a - b)(b - c)(c - a)} ]} } \\  \\  \rm{ =  x {}^{  - [\frac{ \:  \:  \: b - c + c - a + a - b \:  \: }{(a - b)(b - c)(c - a)} ]} } \\  \\  \rm{ = x {}^{ -  \:  [\frac{ \: 0 \: }{(a - b)(b - c)(c - a)}]} } \\  \\ \rm{ = x {}^{0} } \\  \\   \rm{ = 1} \\  \\   \rm{=R.H.S. }

 \red{ \bold{ \huge{ \underline{ \overline{ \mid{ \purple{ \:  \: FORMULA \:  \: USED\:  \:  \red{ \mid}}}}}}}}

 \rm{1. \:  \:  \:  \:  \red{a {}^{m} \times a {}^{n}  = a {}^{m + n}  }} \\  \\  \rm{2. \:  \:  \:  \:  \red{(a {}^{m} ) {}^{n}  = a {}^{mn} }} \\  \\  \rm{3. \:  \:  \:  \:  \red{a {}^{0}  = 1}}

Similar questions