Math, asked by sos40, 6 months ago

solve it fast....... ​

Attachments:

Answers

Answered by BrainlyEmpire
48

TO PROVE :–

 \\ \implies\rm \sqrt\dfrac{1 +  \cos(A) }{1 -  \cos(A) } =  \dfrac{1 +  \cos(A) }{ \sin(A) } \\

SOLUTION :–

• Let's take L.H.S. –

 \\ \rm \:  \:  =   \sqrt\dfrac{1 +  \cos(A) }{1 -  \cos(A) } \:  \: \\

• Now Rationalization of denominator –

 \\ \rm \:  \:  =  {\sqrt{\dfrac{1 +  \cos(A) }{1 -  \cos(A) }  \times\dfrac{1 +  \cos(A) }{1 + \cos(A)}} }\:  \: \\

 \\ \rm \:  \:  =  {\sqrt{\dfrac{ \{1 +  \cos(A)\}^{2} }{ \{1 -  \cos(A) \} \{ 1 +  \cos(A)\}}}}\\

• We know that –

 \\ \large\longrightarrow{ \boxed{ \rm(a - b)(a + b) =  {a}^{2} -  {b}^{2}  }}\\

• So that –

 \\ \rm \:  \:  =  {\sqrt{\dfrac{ \{1 +  \cos(A)\}^{2} }{ \{1 -  \cos^{2} (A) \}}}}\\

• We also know that –

 \\  \large\bf\implies \sin^{2}( \theta) +\cos^{2}( \theta) = 1\\

 \\  \large\bf\implies \sin^{2}( \theta)= 1 - \cos^{2}( \theta) \\

 \\  \large\bf\implies  1 - \cos^{2}( \theta) = \sin^{2}( \theta)\\

• So that –

 \\ \rm \:  \:  = \:\: {\sqrt{\dfrac{ \{1 +  \cos(A)\}^{2} }{\sin^{2} (A)}}}\\

 \\ \rm \:  \:  =  \:  \:  \dfrac{ 1 +  \cos(A)}{\sin(A)}\\

 \\ \rm \:  \:  =  \:  \: R.H.S. \\

 \\ \large \longrightarrow{ \boxed{ \rm Hence \:  \:Proved }}\\

Answered by Anonymous
19

TO PROVE :–

 \\ \implies\rm \sqrt\dfrac{1 +  \cos(A) }{1 -  \cos(A) } =  \dfrac{1 +  \cos(A) }{ \sin(A) } \\

SOLUTION :–

• Let's take L.H.S. –

 \\ \rm \:  \:  =   \sqrt\dfrac{1 +  \cos(A) }{1 -  \cos(A) } \:  \: \\

• Now Rationalization of denominator –

 \\ \rm \:  \:  =  {\sqrt{\dfrac{1 +  \cos(A) }{1 -  \cos(A) }  \times\dfrac{1 +  \cos(A) }{1 + \cos(A)}} }\:  \: \\

 \\ \rm \:  \:  =  {\sqrt{\dfrac{ \{1 +  \cos(A)\}^{2} }{ \{1 -  \cos(A) \} \{ 1 +  \cos(A)\}}}}\\

• We know that –

 \\ \large\longrightarrow{ \boxed{ \rm(a - b)(a + b) =  {a}^{2} -  {b}^{2}  }}\\

• So that –

 \\ \rm \:  \:  =  {\sqrt{\dfrac{ \{1 +  \cos(A)\}^{2} }{ \{1 -  \cos^{2} (A) \}}}}\\

• We also know that –

 \\  \large\bf\implies \sin^{2}( \theta) +\cos^{2}( \theta) = 1\\

 \\  \large\bf\implies \sin^{2}( \theta)= 1 - \cos^{2}( \theta) \\

 \\  \large\bf\implies  1 - \cos^{2}( \theta) = \sin^{2}( \theta)\\

• So that –

 \\ \rm \:  \:  = \:\: {\sqrt{\dfrac{ \{1 +  \cos(A)\}^{2} }{\sin^{2} (A)}}}\\

 \\ \rm \:  \:  =  \:  \:  \dfrac{ 1 +  \cos(A)}{\sin(A)}\\

 \\ \rm \:  \:  =  \:  \: R.H.S. \\

 \\ \large \longrightarrow{ \boxed{ \rm Hence \:  \:Proved }}\\

Similar questions