Math, asked by tail77, 3 months ago

solve it fast........​

Attachments:

Answers

Answered by BrainlyEmpire
41

ʀᴇǫᴜɪʀᴇᴅ ᴀɴsᴡᴇʀ:–

\begin{gathered} \qquad \quad{:}\longrightarrow \sf{\lim_{x \to 0} \bigg(\dfrac{1}{x^{2} + a}\bigg) + \lim_{x \to 0} \bigg(\dfrac{1}{a - x^{2}}\bigg)} \\ \\\end{gathered}

  • By applying the sum rule for limits in the equation, we get :

 \qquad \large { \underbrace { \bf{Quotient  \: rule \: for \: limits: - }}}

\begin{gathered}\boxed{\sf{\lim_{x \to a} \dfrac{f(x)}{g(x)} = \dfrac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}}} \\ \\ \end{gathered}

 \qquad  \quad{:}\longrightarrow \sf{\dfrac{\lim_{x \to 0}(1)}{\lim_{x \to 0}(x^{2} + a)} + \dfrac{\lim_{x \to 0}(1)}{\lim_{x \to 0}(a - x^{2})}}\\

  • By applying the constant rule limits in the equation, we get :

\qquad \large { \underbrace { \bf{Constant  \: rule \: for \: limits: - }}}

\boxed{\sf{\lim_{x \to a} (c) = c}}

\qquad  \quad{:}\longrightarrow  \sf{\dfrac{1}{\lim_{x \to 0}(x^{2} + a)} + \dfrac{1}{\lim_{x \to 0}(a - x^{2})}}\\

  • By applying the sum rule for limits in the equation, we get :

\qquad \large { \underbrace { \bf{Sum  \: rule \: for \: limits: - }}}

\boxed{\sf{\lim_{x \to a} [f(x) + g(x)] =\lim_{x \to a} [f(x)] + \lim_{x \to a} [g(x)]}}

\qquad \quad:\longrightarrow \sf{\dfrac{1}{\lim_{x \to 0}(x^{2}) + \lim_{x \to 0}(a)} + \dfrac{1}{\lim_{x \to 0}(a) - \lim_{x \to 0}(x^{2})}}  \\

\qquad \quad:\longrightarrow \sf{\dfrac{1}{0^{2} + a} + \dfrac{1}{a - 0^{2}}} \:\:\:\: [\because \sf{\lim_{x \to a} c = c}]  \\

\qquad \quad:\longrightarrow\sf{\dfrac{1}{a} + \dfrac{1}{a}} \:\:\: \bigg[\because \sf{\dfrac{b}{a} + \dfrac{c}{a} = \dfrac{b + c}{a}\bigg]}\\

\qquad \quad:\longrightarrow\sf{\dfrac{(1 + 1)}{a} = \dfrac{2}{a}}

\begin{gathered}\boxed{\therefore \sf{\lim_{x \to 0} \bigg(\dfrac{1}{x^{2} + a}\bigg) + \lim_{x \to 0} \bigg(\dfrac{1}{a - x^{2}}\bigg) = \dfrac{2}{a}}} \\ \\ \end{gathered}

_________•⭐•______________________________________________________•_________________________________•________________•___________________________________•_____________________________________•_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Similar questions