solve it fast class 10 trigo.
Try to solve without actually finding the values
Attachments:
Answers
Answered by
8
Here is your solution :
Given,
=> cot∅ = ( 1 / √3 )
=> R.H.S = ( 3/5 )
=> L.H.S = ( 1 - cos²∅ ) / ( 2 - sin²∅ ) -- ( 1 )
We know that,
=> sin∅ / cos∅ = tan∅
Using identity ,
=> tan∅ = ( 1/cot∅ )
=> sin∅ / cos∅ = ( 1 / cot∅ )
=> cot∅ = cos∅ / sin∅
=> cos∅ = cot∅ × sin∅
Using identity ,
=> sin∅ = ( 1/cosec∅ )
=> cos∅ = cot∅ ( 1/cosec∅ )
=> cos∅ = cot∅ / cosec∅
Using identity,
=> cosec²∅ - cot²∅ = 1
=> cosec²∅ = ( 1 + cot²∅ )
=> cosec∅ = √( 1 + cot²∅ )
=> cos∅ = cot∅ / √( 1 + cot² ∅ ) ------ ( 2 )
Again,
We know that,
=> cosec²∅ - cot²∅ = 1
=> cosec²∅ = ( 1 + cot²∅ )
Using identity,
=> cosec∅ = ( 1/sin∅ )
=> ( 1/sin∅ )² = ( 1 + cot²∅ )
=> 1 / sin²∅ = ( 1 + cot²∅ )
=> sin²∅ = 1 / ( 1 + cot²∅ )
=> sin∅ = √[ 1 / ( 1 + cot²∅ ) ]
•°• sin∅ = 1 / √( 1 + cot²∅ ). ----------- ( 3 )
Substitute the value of ( 2 ) and ( 3 ) in ( 1 ),
= ( 1 - cos²∅ ) / ( 2 - sin²∅ )
= [ 1 - ( cos∅ )² ] / [ 2 - ( sin∅ )² ]
= [ 1 - { cot∅/√( 1 + cot²∅ ) }² ] / [ 2 - { 1/√( 1 + cot²∅ )}² ]
= [ 1 - { cot²∅ / ( 1 + cot²∅ ) } ] / [ 2 - { 1 / ( 1 + cot²∅ ]
Numerator :
= [ 1 - { cot²∅ / ( 1 + cot²∅ } ]
= ( 1 + cot²∅ - cot²∅ ) / ( 1 + cot²∅ )
= 1 / ( 1 + cot²∅ )
Denominator :
= [ 2 - { 1 / ( 1 + cot²∅ ) } ]
= [ 2 + 2 cot²∅ - 1 ] / ( 1 + cot²∅ )
= ( 1 + 2 cot²∅ ) / ( 1 + cot²∅ )
Fraction = Numerator / Denominator
= [ 1 / ( 1 + cot²∅ ) ] / [ ( 1 + 2 cot²∅ ) / ( 1 + cot²∅ ) ]
= [ 1 / ( 1 + cot²∅ ) ] × [ ( 1 + cot²∅ ) / ( 1 + 2 cot²∅ ) ]
= 1 / ( 1 + 2 cot²∅ )
Substitute the value of cot∅,
= 1 / [ 1 + 2 ( 1 / √3 )² ]
= 1 / [ 1 + 2 ( 1 / 3 ) ]
= 1 / [ ( 3 + 2 ) / 3 ]
= 1 / [ 5 / 3 ]
=> ( 3 / 5 ) = R.H.S
Given,
=> cot∅ = ( 1 / √3 )
=> R.H.S = ( 3/5 )
=> L.H.S = ( 1 - cos²∅ ) / ( 2 - sin²∅ ) -- ( 1 )
We know that,
=> sin∅ / cos∅ = tan∅
Using identity ,
=> tan∅ = ( 1/cot∅ )
=> sin∅ / cos∅ = ( 1 / cot∅ )
=> cot∅ = cos∅ / sin∅
=> cos∅ = cot∅ × sin∅
Using identity ,
=> sin∅ = ( 1/cosec∅ )
=> cos∅ = cot∅ ( 1/cosec∅ )
=> cos∅ = cot∅ / cosec∅
Using identity,
=> cosec²∅ - cot²∅ = 1
=> cosec²∅ = ( 1 + cot²∅ )
=> cosec∅ = √( 1 + cot²∅ )
=> cos∅ = cot∅ / √( 1 + cot² ∅ ) ------ ( 2 )
Again,
We know that,
=> cosec²∅ - cot²∅ = 1
=> cosec²∅ = ( 1 + cot²∅ )
Using identity,
=> cosec∅ = ( 1/sin∅ )
=> ( 1/sin∅ )² = ( 1 + cot²∅ )
=> 1 / sin²∅ = ( 1 + cot²∅ )
=> sin²∅ = 1 / ( 1 + cot²∅ )
=> sin∅ = √[ 1 / ( 1 + cot²∅ ) ]
•°• sin∅ = 1 / √( 1 + cot²∅ ). ----------- ( 3 )
Substitute the value of ( 2 ) and ( 3 ) in ( 1 ),
= ( 1 - cos²∅ ) / ( 2 - sin²∅ )
= [ 1 - ( cos∅ )² ] / [ 2 - ( sin∅ )² ]
= [ 1 - { cot∅/√( 1 + cot²∅ ) }² ] / [ 2 - { 1/√( 1 + cot²∅ )}² ]
= [ 1 - { cot²∅ / ( 1 + cot²∅ ) } ] / [ 2 - { 1 / ( 1 + cot²∅ ]
Numerator :
= [ 1 - { cot²∅ / ( 1 + cot²∅ } ]
= ( 1 + cot²∅ - cot²∅ ) / ( 1 + cot²∅ )
= 1 / ( 1 + cot²∅ )
Denominator :
= [ 2 - { 1 / ( 1 + cot²∅ ) } ]
= [ 2 + 2 cot²∅ - 1 ] / ( 1 + cot²∅ )
= ( 1 + 2 cot²∅ ) / ( 1 + cot²∅ )
Fraction = Numerator / Denominator
= [ 1 / ( 1 + cot²∅ ) ] / [ ( 1 + 2 cot²∅ ) / ( 1 + cot²∅ ) ]
= [ 1 / ( 1 + cot²∅ ) ] × [ ( 1 + cot²∅ ) / ( 1 + 2 cot²∅ ) ]
= 1 / ( 1 + 2 cot²∅ )
Substitute the value of cot∅,
= 1 / [ 1 + 2 ( 1 / √3 )² ]
= 1 / [ 1 + 2 ( 1 / 3 ) ]
= 1 / [ ( 3 + 2 ) / 3 ]
= 1 / [ 5 / 3 ]
=> ( 3 / 5 ) = R.H.S
Anonymous:
Ur wlcm
Similar questions