Math, asked by Amaannn, 1 month ago

solve it fast everyone...!!!!​

Attachments:

Answers

Answered by mathdude500
4

Given Question :-

The value of k, if f(x) is continuous at x = 0

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ {\bigg(cosx\bigg) }^{\dfrac{1}{x}}  \:  \: when \: x \:  \ne \: 0} \\ &\sf{k \:  \: when \: x \:  =  \: 0} \end{cases}\end{gathered}\end{gathered} \: \:  is

 \red{\large\underline{\sf{Solution-}}}

Given function is

\begin{gathered}\begin{gathered}\bf\:\rm :\longmapsto\: f(x) \:  =  \: \begin{cases} &\sf{ {\bigg(cosx\bigg) }^{\dfrac{1}{x}}  \:  \: when \: x \:  \ne \: 0} \\ &\sf{k \:  \: when \: x \:  =  \: 0} \end{cases}\end{gathered}\end{gathered}

Its given that f(x) is continuous at x = 0.

We know, A function f(x) is continuous at x = 0, iff

\boxed{ \tt{ \: f(0) = \displaystyle\lim _{x \to 0}f(x) \: }}

So, using this

\rm :\longmapsto\:k = \displaystyle\lim _{x \to 0} {\bigg(cosx\bigg) }^{\dfrac{1}{x} }

To evaluate this limit, Taking log on both sides, we get

\rm :\longmapsto\:logk = \displaystyle\lim _{x \to 0} log{\bigg(cosx\bigg) }^{\dfrac{1}{x} }

\rm :\longmapsto\:logk = \displaystyle\lim _{x \to 0}\dfrac{1}{x}log(cosx)

\rm :\longmapsto\:logk = \displaystyle\lim _{x \to 0}\dfrac{log(cosx)}{x}

On applying L - Hospital Rule, we get

\rm :\longmapsto\:logk = \displaystyle\lim _{x \to 0}\dfrac{\dfrac{d}{dx}log(cosx)}{\dfrac{d}{dx}x}

We know

\boxed{ \tt{ \: \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x}  \: }} \\  \\ and \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}x \:  =  \: 1 \: }} \\

So, using this, we get

\rm :\longmapsto\:logk = \displaystyle\lim _{x \to 0}\dfrac{\dfrac{1}{cosx}\dfrac{d}{dx}cosx}{1}

\rm :\longmapsto\:logk = \displaystyle\lim _{x \to 0}\dfrac{1}{cosx} \times ( - sinx)

\rm :\longmapsto\:logk = -  \displaystyle\lim _{x \to 0} \: tanx

\rm :\longmapsto\:logk = -   \: tan0

\rm :\longmapsto\:logk = -0

\rm :\longmapsto\:logk =0

\rm :\longmapsto\:k =  {e}^{0}

\bf\implies \:k \:  =  \: 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{ \tt{ \:  log_{x}(y) = z \: \rm \implies\:y =  {x}^{z} \: }}

\boxed{ \tt{ \: \dfrac{d}{dx}sinx \:  =  \:  -  \: cosx \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions