Math, asked by Amaannn, 4 days ago

solve it fast everyone!!!!!!​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

 \sf \: 3\pi < x < 4\pi, \: then \: \dfrac{d}{dx}\bigg( \:  {tan}^{ - 1} \sqrt{\dfrac{1 + cos\dfrac{x}{2} }{1 - cos\dfrac{x}{2} } \:  \:  } \bigg)

 \green{\large\underline{\sf{Solution-}}}

Let assume that

\rm :\longmapsto\:y = \:  {tan}^{ - 1} \sqrt{\dfrac{1 + cos\dfrac{x}{2} }{1 - cos\dfrac{x}{2} } \:  \:  }

We know that

\boxed{ \tt{ \: 1 + cos2x =  {2cos}^{2}x \: }} \\  \\ and \\  \\ \boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }} \\

So, using this identity, we get

\rm :\longmapsto\:y =  {tan}^{ - 1} \sqrt{\dfrac{ {2cos}^{2} \dfrac{x}{4}}{ {2sin}^{2}\dfrac{x}{4}}}

\rm :\longmapsto\:y =  {tan}^{ - 1} \sqrt{\dfrac{ {cos}^{2} \dfrac{x}{4}}{ {sin}^{2}\dfrac{x}{4}}}

\rm :\longmapsto\:y =  {tan}^{ - 1} \sqrt{ {cot}^{2} \dfrac{x}{4}}

\rm \implies\:y =  {tan}^{ - 1}\bigg |cot\dfrac{x}{4}\bigg|

As, it is given that,

\red{\rm :\longmapsto\:3\pi < x < 4\pi \: \rm \implies\:\dfrac{3\pi}{4}  < \dfrac{x}{4}  < \pi \: }

 \red{\rm \implies\:\dfrac{x}{4} \: lies \: in \: second \: quadrant}

 \red{\rm \implies\:cot\dfrac{x}{4} < 0}

So, it implies

\rm :\longmapsto\:y =  -  {tan}^{ - 1}\bigg(cot\dfrac{x}{4} \bigg)

\rm :\longmapsto\:y =  -  {tan}^{ - 1}\bigg(tan\bigg[\dfrac{\pi}{2} -  \dfrac{x}{4}\bigg]\bigg)

\rm :\longmapsto\:y =  - \bigg[\dfrac{\pi}{2}  - \dfrac{x}{4}\bigg]

\rm :\longmapsto\:y =  - \dfrac{\pi}{2} +  \dfrac{x}{4}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}\bigg[ - \dfrac{\pi}{2} +  \dfrac{x}{4}\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k = 0 \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \: }}

So, using this, we get

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{1}{4} \: }}

Hence,

 \boxed{\sf \:3\pi <x <4\pi, \: then\:\dfrac{d}{dx}\bigg({tan}^{ - 1}\sqrt{\dfrac{1 + cos\dfrac{x}{2} }{1-cos\dfrac{x}{2}}} \bigg) =  \frac{1}{4}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\ \sf   {sin}^{ - 1}x & \sf \dfrac{1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {cos}^{ - 1}x  & \sf  \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {tan}^{ - 1}x  & \sf  \dfrac{1}{1 +  {x}^{2} } \\ \\ \sf  {sec}^{ - 1}x & \sf   \dfrac{1}{x \sqrt{ {x}^{2} - 1 } }   \end{array}} \\ \end{gathered}}

Similar questions